Department of Internal Medicine D, and Interdisciplinary Fabry Center (IFAZ), University Hospital Muenster, Muenster, Germany.
Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Muenster, Muenster, Germany.
Front Immunol. 2021 Nov 30;12:789142. doi: 10.3389/fimmu.2021.789142. eCollection 2021.
Fabry disease (FD) is an X-linked multisystemic lysosomal storage disease due to a deficiency of α-galactosidase A (/AGAL). Progressive cellular accumulation of the AGAL substrate globotriaosylceramide (Gb) leads to endothelial dysfunction. Here, we analyzed endothelial function and in an AGAL-deficient genetic background to identify the processes underlying this small vessel disease. Arterial stiffness and endothelial function was prospectively measured in five males carrying variants (control) and 22 FD patients under therapy. AGAL-deficient endothelial cells (EA.hy926) and monocytes (THP1) were used to analyze endothelial glycocalyx structure, function, and underlying inflammatory signals. Glycocalyx thickness and small vessel function improved significantly over time (p<0.05) in patients treated with enzyme replacement therapy (ERT, n=16) and chaperones (n=6). AGAL-deficient endothelial cells showed reduced glycocalyx and increased monocyte adhesion (p<0.05). In addition, increased expression of angiopoietin-2, heparanase and NF-κB was detected (all p<0.05). Incubation of wild-type endothelial cells with pathological globotriaosylsphingosine concentrations resulted in comparable findings. Treatment of AGAL-deficient cells with recombinant AGAL (p<0.01), heparin (p<0.01), anti-inflammatory (p<0.001) and antioxidant drugs (p<0.05), and a specific inhibitor (razuprotafib) of angiopoietin-1 receptor (Tie2) (p<0.05) improved glycocalyx structure and endothelial function . We conclude that chronic inflammation, including the release of heparanases, appears to be responsible for the degradation of the endothelial glycocalyx and may explain the endothelial dysfunction in FD. This process is partially reversible by FD-specific and anti-inflammatory treatment, such as targeted protective Tie2 treatment.
法布里病(FD)是一种由于α-半乳糖苷酶 A(/AGAL)缺乏引起的 X 连锁多系统溶酶体贮积病。AGAL 底物神经酰胺三己糖苷(Gb)在细胞内的进行性累积导致内皮功能障碍。在此,我们在 AGAL 缺陷的遗传背景下分析了内皮功能,以确定这种小血管疾病的潜在过程。前瞻性地测量了携带变异体的五名男性(对照组)和 22 名接受治疗的 FD 患者的动脉僵硬和内皮功能。使用 AGAL 缺陷的内皮细胞(EA.hy926)和单核细胞(THP1)分析内皮糖萼的结构、功能和潜在的炎症信号。酶替代治疗(ERT,n=16)和伴侣蛋白治疗(n=6)后,患者的糖萼厚度和小血管功能明显随着时间的推移而改善(p<0.05)。AGAL 缺陷的内皮细胞表现出糖萼减少和单核细胞黏附增加(p<0.05)。此外,还检测到血管生成素-2、硫酸乙酰肝素酶和 NF-κB 的表达增加(均 p<0.05)。用病理神经酰胺三己糖苷浓度孵育野生型内皮细胞也得到了类似的发现。用重组 AGAL(p<0.01)、肝素(p<0.01)、抗炎(p<0.001)和抗氧化药物(p<0.05)以及血管生成素-1 受体(Tie2)的特异性抑制剂(razuprotafib)(p<0.05)处理 AGAL 缺陷细胞可改善糖萼结构和内皮功能。我们得出结论,慢性炎症,包括硫酸乙酰肝素酶的释放,似乎是导致内皮糖萼降解的原因,并可能解释 FD 中的内皮功能障碍。这种过程部分可通过 FD 特异性和抗炎治疗,如靶向保护性 Tie2 治疗来逆转。