Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zurich, 8093, Zurich, Switzerland
Neuroscience Center Zurich (ZNZ), University of Zurich, Federal Institute of Technology Zurich, University and Balgrist Hospital Zurich, Zurich 8057, Switzerland.
eNeuro. 2022 Jan 7;9(1). doi: 10.1523/ENEURO.0248-21.2021. Print 2022 Jan-Feb.
Noise introduced in the human nervous system from cellular to systems levels can have a major impact on signal processing. Using transcranial stimulation, electrical noise can be added to cortical circuits to modulate neuronal activity and enhance function in the healthy brain and in neurologic patients. Transcranial random noise stimulation (tRNS) is a promising technique that is less well understood than other non-invasive neuromodulatory methods. The aim of the present scoping review is to collate published evidence on the effects of electrical noise at the cellular, systems, and behavioral levels, and discuss how this emerging method might be harnessed to augment perceptual and motor functioning of the human nervous system. Online databases were used to identify papers published in 2008-2021 using tRNS in humans, from which we identified 70 publications focusing on sensory and motor function. Additionally, we interpret the existing evidence by referring to articles investigating the effects of noise stimulation in animal and subcellular models. We review physiological and behavioral findings of tRNS-induced offline after-effects and acute online benefits which manifest immediately when tRNS is applied to sensory or motor cortices. We link these results to evidence showing that activity of voltage-gated sodium ion channels might be an important cellular substrate for mediating these tRNS effects. We argue that tRNS might make neural signal transmission and processing within neuronal populations more efficient, which could contribute to both (1) offline after-effects in the form of a prolonged increase in cortical excitability and (2) acute online noise benefits when computations rely on weak inputs.
从细胞到系统水平,人类神经系统中的噪声会对信号处理产生重大影响。使用经颅刺激,可以向皮质电路中添加电噪声,以调节神经元活动并增强健康大脑和神经患者的功能。经颅随机噪声刺激(tRNS)是一种很有前途的技术,但不如其他非侵入性神经调节方法那么为人所理解。本范围综述的目的是整理已发表的关于细胞、系统和行为水平上的电噪声影响的证据,并讨论如何利用这种新兴方法来增强人类神经系统的感知和运动功能。使用在线数据库,我们确定了在 2008 年至 2021 年间在人类中使用 tRNS 的论文,并从这些论文中确定了 70 篇重点关注感觉和运动功能的出版物。此外,我们还通过参考研究噪声刺激对动物和亚细胞模型影响的文章来解释现有证据。我们回顾了 tRNS 诱导的离线后效和急性在线获益的生理和行为发现,当 tRNS 应用于感觉或运动皮质时,这些发现会立即显现。我们将这些结果与表明电压门控钠离子通道活性可能是介导这些 tRNS 效应的重要细胞基质的证据联系起来。我们认为,tRNS 可能使神经元群体中的神经信号传输和处理更有效率,这可能有助于(1)以皮质兴奋性延长增加的形式产生离线后效,以及(2)当计算依赖于弱输入时产生急性在线噪声收益。