Suppr超能文献

内源性大麻素信号系统的成像。

Imaging the endocannabinoid signaling system.

机构信息

Department of Neurosurgery, Stanford University, Stanford, CA, USA.

Department of Neurosurgery, Stanford University, Stanford, CA, USA.

出版信息

J Neurosci Methods. 2022 Feb 1;367:109451. doi: 10.1016/j.jneumeth.2021.109451. Epub 2021 Dec 15.

Abstract

The endocannabinoid (eCB) system is one of the most widespread neuromodulatory systems in the mammalian brain, with a multifaceted role in functions ranging from development to synaptic plasticity. Endocannabinoids are synthesized on demand from membrane lipid precursors, and act primarily on a single G-protein coupled receptor type, CB, to carry out diverse functions. Despite the importance of the eCB system both in healthy brain function and in disease, critically important details of eCB signaling remained unknown. How eCBs are released from the membrane, how these lipid molecules are transported between cells, and how the distribution of their receptors is controlled, remained elusive. Recent advances in optical microscopy methods and biosensor engineering may open up new avenues for studying eCB signaling. We summarize applications of superresolution microscopy using single molecule localization to reveal distinct patterns of nanoscale CB distribution in neuronal axons and axon terminals. We review single particle tracking studies using quantum dots that allowed visualizing CB trajectories. We highlight the recent development of fluorescent eCB biosensors, that revealed spatiotemporally specific eCB release in live cells and live animals. Finally, we discuss future directions where method development may help to advance a precise understanding of eCB signaling.

摘要

内源性大麻素(eCB)系统是哺乳动物大脑中分布最广泛的神经调质系统之一,在从发育到突触可塑性的各种功能中具有多方面的作用。内源性大麻素可按需从膜脂质前体合成,并主要作用于单一的 G 蛋白偶联受体 CB 型,以发挥多种功能。尽管 eCB 系统在健康大脑功能和疾病中都非常重要,但 eCB 信号传递的关键细节仍不清楚。内源性大麻素如何从膜中释放,这些脂质分子如何在细胞间运输,以及其受体的分布如何受到控制,这些问题仍然难以捉摸。光学显微镜方法和生物传感器工程的最新进展可能为研究 eCB 信号传递开辟新的途径。我们总结了使用单分子定位的超分辨率显微镜在神经元轴突和轴突末梢中揭示 CB 分布的纳米级独特模式的应用。我们回顾了使用量子点进行的单颗粒跟踪研究,这些研究使我们能够可视化 CB 轨迹。我们强调了最近开发的荧光内源性大麻素生物传感器的发展,该传感器在活细胞和活体动物中揭示了特定时空的内源性大麻素释放。最后,我们讨论了可能有助于更精确地理解 eCB 信号传递的未来发展方向。

相似文献

1
Imaging the endocannabinoid signaling system.
J Neurosci Methods. 2022 Feb 1;367:109451. doi: 10.1016/j.jneumeth.2021.109451. Epub 2021 Dec 15.
2
Endocannabinoid signaling and synaptic plasticity in the brain.
Crit Rev Neurobiol. 2006;18(1-2):113-24. doi: 10.1615/critrevneurobiol.v18.i1-2.120.
3
Synaptic functions of endocannabinoid signaling in health and disease.
Neuropharmacology. 2017 Sep 15;124:13-24. doi: 10.1016/j.neuropharm.2017.06.017. Epub 2017 Jun 15.
5
DAGL-dependent endocannabinoid signalling: roles in axonal pathfinding, synaptic plasticity and adult neurogenesis.
Eur J Neurosci. 2011 Nov;34(10):1634-46. doi: 10.1111/j.1460-9568.2011.07831.x.
6
Multiple Forms of Endocannabinoid and Endovanilloid Signaling Regulate the Tonic Control of GABA Release.
J Neurosci. 2015 Jul 8;35(27):10039-57. doi: 10.1523/JNEUROSCI.4112-14.2015.
9
Wiring and firing neuronal networks: endocannabinoids take center stage.
Curr Opin Neurobiol. 2008 Jun;18(3):338-45. doi: 10.1016/j.conb.2008.08.007.
10
Supply and demand for endocannabinoids.
Trends Neurosci. 2011 Jun;34(6):304-15. doi: 10.1016/j.tins.2011.03.003. Epub 2011 Apr 18.

引用本文的文献

1
Neural Metabolic Networks: Key Elements of Healthy Brain Function.
J Neurochem. 2025 Jun;169(6):e70084. doi: 10.1111/jnc.70084.
2
Multi-level therapeutic actions of cannabidiol in ketamine-induced schizophrenia psychopathology in male rats.
Neuropsychopharmacology. 2024 Dec;50(2):388-400. doi: 10.1038/s41386-024-01977-1. Epub 2024 Sep 6.
3
A lactate-dependent shift of glycolysis mediates synaptic and cognitive processes in male mice.
Nat Commun. 2024 Aug 9;15(1):6842. doi: 10.1038/s41467-024-51008-2.
4
Imaging and Genetic Tools for the Investigation of the Endocannabinoid System in the CNS.
Int J Mol Sci. 2023 Oct 31;24(21):15829. doi: 10.3390/ijms242115829.
5
Dysregulation of the endogenous cannabinoid system following opioid exposure.
Psychiatry Res. 2023 Dec;330:115586. doi: 10.1016/j.psychres.2023.115586. Epub 2023 Nov 3.
7
Local and long-range GABAergic circuits in hippocampal area CA1 and their link to Alzheimer's disease.
Front Neural Circuits. 2023 Sep 29;17:1223891. doi: 10.3389/fncir.2023.1223891. eCollection 2023.
8
Endocannabinoid signaling in the central nervous system.
Glia. 2023 Jan;71(1):5-35. doi: 10.1002/glia.24280. Epub 2022 Oct 29.

本文引用的文献

1
A fluorescent sensor for spatiotemporally resolved imaging of endocannabinoid dynamics in vivo.
Nat Biotechnol. 2022 May;40(5):787-798. doi: 10.1038/s41587-021-01074-4. Epub 2021 Nov 11.
2
PharmacoSTORM nanoscale pharmacology reveals cariprazine binding on Islands of Calleja granule cells.
Nat Commun. 2021 Nov 11;12(1):6505. doi: 10.1038/s41467-021-26757-z.
3
Axonal CB1 Receptors Mediate Inhibitory Bouton Formation via cAMP Increase and PKA.
J Neurosci. 2021 Oct 6;41(40):8279-8296. doi: 10.1523/JNEUROSCI.0851-21.2021. Epub 2021 Aug 19.
5
A taxonomy of transcriptomic cell types across the isocortex and hippocampal formation.
Cell. 2021 Jun 10;184(12):3222-3241.e26. doi: 10.1016/j.cell.2021.04.021. Epub 2021 May 17.
6
Mechanisms of endocannabinoid transport in the brain.
Br J Pharmacol. 2022 Sep;179(17):4300-4310. doi: 10.1111/bph.15469. Epub 2021 May 27.
7
Alternating sources of perisomatic inhibition during behavior.
Neuron. 2021 Mar 17;109(6):997-1012.e9. doi: 10.1016/j.neuron.2021.01.003. Epub 2021 Feb 1.
9
Sex differences in endocannabinoid modulation of rat CA1 dendritic neurotransmission.
Neurobiol Stress. 2020 Nov 30;13:100283. doi: 10.1016/j.ynstr.2020.100283. eCollection 2020 Nov.
10
Assembly of synaptic active zones requires phase separation of scaffold molecules.
Nature. 2020 Dec;588(7838):454-458. doi: 10.1038/s41586-020-2942-0. Epub 2020 Nov 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验