Department of Neurosurgery, Stanford University, Stanford, CA, USA.
Department of Neurosurgery, Stanford University, Stanford, CA, USA.
J Neurosci Methods. 2022 Feb 1;367:109451. doi: 10.1016/j.jneumeth.2021.109451. Epub 2021 Dec 15.
The endocannabinoid (eCB) system is one of the most widespread neuromodulatory systems in the mammalian brain, with a multifaceted role in functions ranging from development to synaptic plasticity. Endocannabinoids are synthesized on demand from membrane lipid precursors, and act primarily on a single G-protein coupled receptor type, CB, to carry out diverse functions. Despite the importance of the eCB system both in healthy brain function and in disease, critically important details of eCB signaling remained unknown. How eCBs are released from the membrane, how these lipid molecules are transported between cells, and how the distribution of their receptors is controlled, remained elusive. Recent advances in optical microscopy methods and biosensor engineering may open up new avenues for studying eCB signaling. We summarize applications of superresolution microscopy using single molecule localization to reveal distinct patterns of nanoscale CB distribution in neuronal axons and axon terminals. We review single particle tracking studies using quantum dots that allowed visualizing CB trajectories. We highlight the recent development of fluorescent eCB biosensors, that revealed spatiotemporally specific eCB release in live cells and live animals. Finally, we discuss future directions where method development may help to advance a precise understanding of eCB signaling.
内源性大麻素(eCB)系统是哺乳动物大脑中分布最广泛的神经调质系统之一,在从发育到突触可塑性的各种功能中具有多方面的作用。内源性大麻素可按需从膜脂质前体合成,并主要作用于单一的 G 蛋白偶联受体 CB 型,以发挥多种功能。尽管 eCB 系统在健康大脑功能和疾病中都非常重要,但 eCB 信号传递的关键细节仍不清楚。内源性大麻素如何从膜中释放,这些脂质分子如何在细胞间运输,以及其受体的分布如何受到控制,这些问题仍然难以捉摸。光学显微镜方法和生物传感器工程的最新进展可能为研究 eCB 信号传递开辟新的途径。我们总结了使用单分子定位的超分辨率显微镜在神经元轴突和轴突末梢中揭示 CB 分布的纳米级独特模式的应用。我们回顾了使用量子点进行的单颗粒跟踪研究,这些研究使我们能够可视化 CB 轨迹。我们强调了最近开发的荧光内源性大麻素生物传感器的发展,该传感器在活细胞和活体动物中揭示了特定时空的内源性大麻素释放。最后,我们讨论了可能有助于更精确地理解 eCB 信号传递的未来发展方向。