Suppr超能文献

基于深度学习算法的肺部感染性疾病鉴别诊断临床适用人工智能系统

Clinical Applicable AI System Based on Deep Learning Algorithm for Differentiation of Pulmonary Infectious Disease.

作者信息

Zhang Yu-Han, Hu Xiao-Fei, Ma Jie-Chao, Wang Xian-Qi, Luo Hao-Ran, Wu Zi-Feng, Zhang Shu, Shi De-Jun, Yu Yi-Zhou, Qiu Xiao-Ming, Zeng Wen-Bing, Chen Wei, Wang Jian

机构信息

Department of Radiology, The First Affiliated Hospital of the Army Medical University (Southwest Hospital), Chongqing, China.

Deepwise Artificial Intelligence (AI) Lab, Deepwise Inc., Beijing, China.

出版信息

Front Med (Lausanne). 2021 Dec 3;8:753055. doi: 10.3389/fmed.2021.753055. eCollection 2021.

Abstract

To assess the performance of a novel deep learning (DL)-based artificial intelligence (AI) system in classifying computed tomography (CT) scans of pneumonia patients into different groups, as well as to present an effective clinically relevant machine learning (ML) system based on medical image identification and clinical feature interpretation to assist radiologists in triage and diagnosis. The 3,463 CT images of pneumonia used in this multi-center retrospective study were divided into four categories: bacterial pneumonia ( = 507), fungal pneumonia ( = 126), common viral pneumonia ( = 777), and COVID-19 ( = 2,053). We used DL methods based on images to distinguish pulmonary infections. A machine learning (ML) model for risk interpretation was developed using key imaging (learned from the DL methods) and clinical features. The algorithms were evaluated using the areas under the receiver operating characteristic curves (AUCs). The median AUC of DL models for differentiating pulmonary infection was 99.5% (COVID-19), 98.6% (viral pneumonia), 98.4% (bacterial pneumonia), 99.1% (fungal pneumonia), respectively. By combining chest CT results and clinical symptoms, the ML model performed well, with an AUC of 99.7% for SARS-CoV-2, 99.4% for common virus, 98.9% for bacteria, and 99.6% for fungus. Regarding clinical features interpreting, the model revealed distinctive CT characteristics associated with specific pneumonia: in COVID-19, ground-glass opacity (GGO) [92.5%; odds ratio (OR), 1.76; 95% confidence interval (CI): 1.71-1.86]; larger lesions in the right upper lung (75.0%; OR, 1.12; 95% CI: 1.03-1.25) with viral pneumonia; older age (57.0 years ± 14.2, OR, 1.84; 95% CI: 1.73-1.99) with bacterial pneumonia; and consolidation (95.8%, OR, 1.29; 95% CI: 1.05-1.40) with fungal pneumonia. For classifying common types of pneumonia and assessing the influential factors for triage, our AI system has shown promising results. Our ultimate goal is to assist clinicians in making quick and accurate diagnoses, resulting in the potential for early therapeutic intervention.

摘要

为评估一种基于新型深度学习(DL)的人工智能(AI)系统在将肺炎患者的计算机断层扫描(CT)图像分类为不同组别的性能,以及展示一个基于医学图像识别和临床特征解读的有效且与临床相关的机器学习(ML)系统,以协助放射科医生进行分诊和诊断。在这项多中心回顾性研究中使用的3463例肺炎CT图像被分为四类:细菌性肺炎(n = 507)、真菌性肺炎(n = 126)、普通病毒性肺炎(n = 777)和新冠肺炎(n = 2053)。我们使用基于图像的DL方法来区分肺部感染。利用关键影像特征(从DL方法中学习得到)和临床特征开发了一个用于风险解读的机器学习(ML)模型。使用受试者操作特征曲线下面积(AUC)对算法进行评估。DL模型区分肺部感染的中位AUC分别为:新冠肺炎99.5%、病毒性肺炎98.6%、细菌性肺炎98.4%、真菌性肺炎99.1%。通过结合胸部CT结果和临床症状,ML模型表现良好,针对严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的AUC为99.7%,普通病毒为99.4%,细菌为98.9%,真菌为99.6%。关于临床特征解读,该模型揭示了与特定肺炎相关的独特CT特征:在新冠肺炎中,磨玻璃影(GGO)[92.5%;优势比(OR),1.76;95%置信区间(CI):1.71 - 1.86];病毒性肺炎时右上肺较大病灶(75.0%;OR,1.12;95%CI:1.03 - 1.25);细菌性肺炎时年龄较大(57.0岁±14.2,OR,1.84;95%CI:1.73 - 1.99);真菌性肺炎时实变(95.8%,OR,1.29;95%CI:1.05 - 1.40)。对于常见类型肺炎的分类以及评估分诊的影响因素,我们的AI系统已显示出有前景的结果。我们的最终目标是协助临床医生做出快速准确的诊断,从而实现早期治疗干预的可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6655/8677931/3e3cf4a04dc1/fmed-08-753055-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验