Suppr超能文献

分析车辆-行人交互:结合数据立方体结构和预测碰撞风险估计模型。

Analyzing vehicle-pedestrian interactions: Combining data cube structure and predictive collision risk estimation model.

机构信息

Applied Science Research Institute, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseung-gu, Daejeon, Republic of Korea.

Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseung-gu, Daejeon, Republic of Korea.

出版信息

Accid Anal Prev. 2022 Feb;165:106539. doi: 10.1016/j.aap.2021.106539. Epub 2021 Dec 17.

Abstract

Road traffic accidents are a severe threat to human lives, particularly to vulnerable road users (VRUs) such as pedestrians causing premature deaths. Therefore, it is necessary to devise systems to prevent accidents in advance and respond proactively, using potential risky situations as one of the surrogate safety measurements. This study introduces a new concept of a pedestrian safety system that combines the field and the centralized processes. The system can warn of upcoming risks immediately in the field and improve the safety of risk-frequent areas by assessing the safety levels of roads without actual collisions. In particular, this study focuses on the latter by introducing a new analytical framework for a crosswalk safety assessment with various behaviors of vehicles/pedestrians and environmental features. We obtain these behavioral features from actual traffic video footages in the city with complete automatic processing. The proposed framework mainly analyzes these behaviors in multi-dimensional perspectives by constructing a data cube structure, which combines the Long Short-Term Memory (LSTM)-based predictive collision risk (PCR) estimation model and the on-line analytical processing (OLAP) operations. From the PCR estimation model, we categorize the severity of risks as four levels; "relatively safe," "caution," "warning," and "danger," and apply the proposed framework to assess the crosswalk safety with behavioral features. With the proposed framework, the various descriptive results are harvested, but we aim at conducting analysis based on two scenarios in our analytic experiments; the movement patterns of vehicles and pedestrians by road environment and the relationships between risk levels and car speeds. Consequently, the proposed framework can support decision-makers (e.g., urban planners, safety administrators) by providing the valuable information to improve pedestrian safety for future accidents, and it can help us better understand cars' and pedestrians' proactive behavior near the crosswalks. In order to confirm the feasibility and applicability of the proposed framework, we implement and apply it to actual operating CCTVs in Osan City, Republic of Korea.

摘要

道路交通事故严重威胁人类生命,尤其是对行人等弱势道路使用者(VRU),可能导致其过早死亡。因此,有必要提前设计系统来预防事故,并主动做出响应,将潜在的危险情况作为替代安全措施之一。本研究提出了一种新的行人安全系统概念,该系统将现场和集中流程相结合。该系统可以立即在现场发出即将发生的风险警报,并通过评估没有实际碰撞的道路的安全水平,改善风险频繁区域的安全性。特别是,本研究通过引入一种新的分析框架来重点研究后者,该框架用于评估交叉口的安全性,涉及车辆/行人的各种行为和环境特征。我们从城市中实际的交通视频中获取这些行为特征,并通过完全自动化的处理来实现。所提出的框架主要通过构建数据立方体结构,从多维角度分析这些行为,该结构结合了基于长短期记忆(LSTM)的预测碰撞风险(PCR)估计模型和在线分析处理(OLAP)操作。从 PCR 估计模型中,我们将风险严重程度分为四个级别:“相对安全”、“谨慎”、“警告”和“危险”,并应用所提出的框架通过行为特征来评估交叉口的安全性。通过该框架,可以收集到各种描述性结果,但我们的分析实验旨在基于两种场景进行分析;道路环境中的车辆和行人的运动模式以及风险水平与车速之间的关系。因此,该框架可以通过提供有价值的信息来支持决策者(例如城市规划者、安全管理人员),以便为未来的事故提高行人安全性,还可以帮助我们更好地理解车辆和行人在交叉口附近的主动行为。为了确认所提出框架的可行性和适用性,我们在韩国乌山市的实际运行 CCTV 中实现并应用了该框架。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验