IEEE Trans Neural Syst Rehabil Eng. 2021;29:2733-2741. doi: 10.1109/TNSRE.2021.3138297. Epub 2022 Jan 4.
Retinal prostheses aim to improve visual perception in patients blinded by photoreceptor degeneration. However, shape and letter perception with these devices is currently limited due to low spatial resolution. Previous research has shown the retinal ganglion cell (RGC) spatial activity and phosphene shapes can vary due to the complexity of retina structure and electrode-retina interactions. Visual percepts elicited by single electrodes differ in size and shapes for different electrodes within the same subject, resulting in interference between phosphenes and an unclear image. Prior work has shown that better patient outcomes correlate with spatially separate phosphenes. In this study we use calcium imaging, in vitro retina, neural networks (NN), and an optimization algorithm to demonstrate a method to iteratively search for optimal stimulation parameters that create focal RGC activation. Our findings indicate that we can converge to stimulation parameters that result in focal RGC activation by sampling less than 1/3 of the parameter space. A similar process implemented clinically can reduce time required for optimizing implant operation and enable personalized fitting of retinal prostheses.
视网膜假体旨在改善因光感受器变性而失明的患者的视觉感知。然而,由于空间分辨率低,这些设备的形状和字母感知目前受到限制。先前的研究表明,由于视网膜结构和电极-视网膜相互作用的复杂性,视网膜神经节细胞 (RGC) 的空间活动和光点形状会发生变化。同一受试者中不同电极的单个电极诱发的视觉感觉在大小和形状上都不同,导致光点之间相互干扰,图像不清晰。先前的工作表明,更好的患者结果与空间上分离的光点相关。在这项研究中,我们使用钙成像、体外视网膜、神经网络 (NN) 和优化算法来演示一种迭代搜索最佳刺激参数的方法,这些参数可产生焦点 RGC 激活。我们的研究结果表明,通过对参数空间的采样少于 1/3,我们可以收敛到导致焦点 RGC 激活的刺激参数。在临床中实施类似的过程可以减少优化植入物操作所需的时间,并实现视网膜假体的个性化适配。