Suppr超能文献

通过基于个体的内在活动动态的模型为基础的过滤来增强任务 fMRI 预处理。

Enhancing task fMRI preprocessing via individualized model-based filtering of intrinsic activity dynamics.

机构信息

Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, MO, USA; Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA; Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ 07102, USA.

Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, MO, USA; Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA.

出版信息

Neuroimage. 2022 Feb 15;247:118836. doi: 10.1016/j.neuroimage.2021.118836. Epub 2021 Dec 20.

Abstract

Brain responses recorded during fMRI are thought to reflect both rapid, stimulus-evoked activity and the propagation of spontaneous activity through brain networks. In the current work, we describe a method to improve the estimation of task-evoked brain activity by first "filtering-out the intrinsic propagation of pre-event activity from the BOLD signal. We do so using Mesoscale Individualized NeuroDynamic (MINDy; Singh et al. 2020b) models built from individualized resting-state data to subtract the propagation of spontaneous activity from the task-fMRI signal (MINDy-based Filtering). After filtering, time-series are analyzed using conventional techniques. Results demonstrate that this simple operation significantly improves the statistical power and temporal precision of estimated group-level effects. Moreover, use of MINDy-based filtering increased the similarity of neural activation profiles and prediction accuracy of individual differences in behavior across tasks measuring the same construct (cognitive control). Thus, by subtracting the propagation of previous activity, we obtain better estimates of task-related neural effects.

摘要

fMRI 记录的大脑反应被认为既反映了快速的、由刺激引发的活动,也反映了自发活动通过大脑网络的传播。在当前的工作中,我们描述了一种通过首先“从 BOLD 信号中过滤掉预事件活动的固有传播”来提高任务诱发脑活动估计的方法。我们使用从个体静息态数据构建的 Mesoscale Individualized NeuroDynamic (MINDy;Singh 等人,2020b) 模型来实现这一点,从任务 fMRI 信号中减去自发活动的传播(基于 MINDy 的滤波)。滤波后,使用传统技术分析时间序列。结果表明,这种简单的操作显著提高了估计的组级效应的统计功效和时间精度。此外,基于 MINDy 的滤波的使用增加了相同结构(认知控制)的不同任务测量的神经激活图谱和个体差异预测准确性的相似性。因此,通过减去先前活动的传播,我们获得了更好的与任务相关的神经效应估计。

相似文献

1
Enhancing task fMRI preprocessing via individualized model-based filtering of intrinsic activity dynamics.
Neuroimage. 2022 Feb 15;247:118836. doi: 10.1016/j.neuroimage.2021.118836. Epub 2021 Dec 20.
2
A human brain atlas derived via n-cut parcellation of resting-state and task-based fMRI data.
Magn Reson Imaging. 2016 Feb;34(2):209-18. doi: 10.1016/j.mri.2015.10.036. Epub 2015 Oct 31.
3
Estimation and validation of individualized dynamic brain models with resting state fMRI.
Neuroimage. 2020 Nov 1;221:117046. doi: 10.1016/j.neuroimage.2020.117046. Epub 2020 Jun 27.
4
A blind deconvolution approach to recover effective connectivity brain networks from resting state fMRI data.
Med Image Anal. 2013 Apr;17(3):365-74. doi: 10.1016/j.media.2013.01.003. Epub 2013 Jan 29.
5
State-dependent differences between functional and effective connectivity of the human cortical motor system.
Neuroimage. 2013 Feb 15;67:237-46. doi: 10.1016/j.neuroimage.2012.11.027. Epub 2012 Nov 29.
6
Task-induced brain connectivity promotes the detection of individual differences in brain-behavior relationships.
Neuroimage. 2020 Feb 15;207:116370. doi: 10.1016/j.neuroimage.2019.116370. Epub 2019 Nov 18.
8
Enhancement of temporal resolution and BOLD sensitivity in real-time fMRI using multi-slab echo-volumar imaging.
Neuroimage. 2012 May 15;61(1):115-30. doi: 10.1016/j.neuroimage.2012.02.059. Epub 2012 Feb 28.
9
Deconvolution filtering: temporal smoothing revisited.
Magn Reson Imaging. 2014 Jul;32(6):721-35. doi: 10.1016/j.mri.2014.03.002. Epub 2014 Mar 15.
10
Temporal non-local means filtering for studies of intrinsic brain connectivity from individual resting fMRI.
Med Image Anal. 2020 Apr;61:101635. doi: 10.1016/j.media.2020.101635. Epub 2020 Jan 7.

引用本文的文献

1
Neural Mechanisms Supporting the Relationship between Working Memory Capacity and Proactive Control.
bioRxiv. 2025 May 12:2025.05.09.653198. doi: 10.1101/2025.05.09.653198.
2
Neural Patterns of Social Pain in the Brain-Wide Representations Across Social Contexts.
Adv Sci (Weinh). 2025 May;12(18):e2413795. doi: 10.1002/advs.202413795. Epub 2025 Mar 17.
3
Precision data-driven modeling of cortical dynamics reveals person-specific mechanisms underpinning brain electrophysiology.
Proc Natl Acad Sci U S A. 2025 Jan 21;122(3):e2409577121. doi: 10.1073/pnas.2409577121. Epub 2025 Jan 17.
4
Brain dynamics and spatiotemporal trajectories during threat processing.
bioRxiv. 2025 Feb 6:2024.04.06.588389. doi: 10.1101/2024.04.06.588389.
5
Developing control-theoretic objectives for large-scale brain dynamics and cognitive enhancement.
Annu Rev Control. 2022;54:363-376. doi: 10.1016/j.arcontrol.2022.05.001. Epub 2022 Jul 5.

本文引用的文献

2
The Dual Mechanisms of Cognitive Control Project.
J Cogn Neurosci. 2021 Aug 12:1-26. doi: 10.1162/jocn_a_01768.
3
The Functional Relevance of Task-State Functional Connectivity.
J Neurosci. 2021 Mar 24;41(12):2684-2702. doi: 10.1523/JNEUROSCI.1713-20.2021. Epub 2021 Feb 4.
4
Estimation and validation of individualized dynamic brain models with resting state fMRI.
Neuroimage. 2020 Nov 1;221:117046. doi: 10.1016/j.neuroimage.2020.117046. Epub 2020 Jun 27.
5
Scalable surrogate deconvolution for identification of partially-observable systems and brain modeling.
J Neural Eng. 2020 Aug 11;17(4):046025. doi: 10.1088/1741-2552/aba07d.
6
Analysis of task-based functional MRI data preprocessed with fMRIPrep.
Nat Protoc. 2020 Jul;15(7):2186-2202. doi: 10.1038/s41596-020-0327-3. Epub 2020 Jun 8.
7
Widespread temporal coding of cognitive control in the human prefrontal cortex.
Nat Neurosci. 2019 Nov;22(11):1883-1891. doi: 10.1038/s41593-019-0494-0. Epub 2019 Sep 30.
8
Hierarchical Heterogeneity across Human Cortex Shapes Large-Scale Neural Dynamics.
Neuron. 2019 Mar 20;101(6):1181-1194.e13. doi: 10.1016/j.neuron.2019.01.017. Epub 2019 Feb 7.
9
Inversion of a large-scale circuit model reveals a cortical hierarchy in the dynamic resting human brain.
Sci Adv. 2019 Jan 9;5(1):eaat7854. doi: 10.1126/sciadv.aat7854. eCollection 2019 Jan.
10
Task activations produce spurious but systematic inflation of task functional connectivity estimates.
Neuroimage. 2019 Apr 1;189:1-18. doi: 10.1016/j.neuroimage.2018.12.054. Epub 2018 Dec 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验