Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, MO, USA; Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA; Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ 07102, USA.
Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, MO, USA; Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA.
Neuroimage. 2022 Feb 15;247:118836. doi: 10.1016/j.neuroimage.2021.118836. Epub 2021 Dec 20.
Brain responses recorded during fMRI are thought to reflect both rapid, stimulus-evoked activity and the propagation of spontaneous activity through brain networks. In the current work, we describe a method to improve the estimation of task-evoked brain activity by first "filtering-out the intrinsic propagation of pre-event activity from the BOLD signal. We do so using Mesoscale Individualized NeuroDynamic (MINDy; Singh et al. 2020b) models built from individualized resting-state data to subtract the propagation of spontaneous activity from the task-fMRI signal (MINDy-based Filtering). After filtering, time-series are analyzed using conventional techniques. Results demonstrate that this simple operation significantly improves the statistical power and temporal precision of estimated group-level effects. Moreover, use of MINDy-based filtering increased the similarity of neural activation profiles and prediction accuracy of individual differences in behavior across tasks measuring the same construct (cognitive control). Thus, by subtracting the propagation of previous activity, we obtain better estimates of task-related neural effects.
fMRI 记录的大脑反应被认为既反映了快速的、由刺激引发的活动,也反映了自发活动通过大脑网络的传播。在当前的工作中,我们描述了一种通过首先“从 BOLD 信号中过滤掉预事件活动的固有传播”来提高任务诱发脑活动估计的方法。我们使用从个体静息态数据构建的 Mesoscale Individualized NeuroDynamic (MINDy;Singh 等人,2020b) 模型来实现这一点,从任务 fMRI 信号中减去自发活动的传播(基于 MINDy 的滤波)。滤波后,使用传统技术分析时间序列。结果表明,这种简单的操作显著提高了估计的组级效应的统计功效和时间精度。此外,基于 MINDy 的滤波的使用增加了相同结构(认知控制)的不同任务测量的神经激活图谱和个体差异预测准确性的相似性。因此,通过减去先前活动的传播,我们获得了更好的与任务相关的神经效应估计。