Tahir Ghalib Ahmed, Loo Chu Kiong
Department of Artificial Intelligence, Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur 50603, Malaysia.
Healthcare (Basel). 2021 Dec 3;9(12):1676. doi: 10.3390/healthcare9121676.
Dietary studies showed that dietary problems such as obesity are associated with other chronic diseases, including hypertension, irregular blood sugar levels, and increased risk of heart attacks. The primary cause of these problems is poor lifestyle choices and unhealthy dietary habits, which are manageable using interactive mHealth apps. However, traditional dietary monitoring systems using manual food logging suffer from imprecision, underreporting, time consumption, and low adherence. Recent dietary monitoring systems tackle these challenges by automatic assessment of dietary intake through machine learning methods. This survey discusses the best-performing methodologies that have been developed so far for automatic food recognition and volume estimation. Firstly, the paper presented the rationale of visual-based methods for food recognition. Then, the core of the study is the presentation, discussion, and evaluation of these methods based on popular food image databases. In this context, this study discusses the mobile applications that are implementing these methods for automatic food logging. Our findings indicate that around 66.7% of surveyed studies use visual features from deep neural networks for food recognition. Similarly, all surveyed studies employed a variant of convolutional neural networks (CNN) for ingredient recognition due to recent research interest. Finally, this survey ends with a discussion of potential applications of food image analysis, existing research gaps, and open issues of this research area. Learning from unlabeled image datasets in an unsupervised manner, catastrophic forgetting during continual learning, and improving model transparency using explainable AI are potential areas of interest for future studies.
饮食研究表明,肥胖等饮食问题与其他慢性疾病相关,包括高血压、血糖水平不稳定以及心脏病发作风险增加。这些问题的主要原因是不良的生活方式选择和不健康的饮食习惯,而使用交互式移动健康应用程序可以对其进行管理。然而,传统的通过手动记录食物的饮食监测系统存在不精确、漏报、耗时以及依从性低等问题。最近的饮食监测系统通过机器学习方法自动评估饮食摄入量来应对这些挑战。本次调查讨论了迄今为止为自动食物识别和体积估计所开发的性能最佳的方法。首先,本文阐述了基于视觉的食物识别方法的基本原理。然后,研究的核心是基于流行的食物图像数据库对这些方法进行介绍、讨论和评估。在此背景下,本研究讨论了正在实施这些自动记录食物方法的移动应用程序。我们的研究结果表明,约66.7%的受调查研究使用深度神经网络的视觉特征进行食物识别。同样,由于最近的研究兴趣,所有受调查研究都采用了卷积神经网络(CNN)的变体进行成分识别。最后,本次调查以对食物图像分析的潜在应用、现有研究差距以及该研究领域的开放问题的讨论作为结尾。以无监督方式从未标记图像数据集中学习、持续学习过程中的灾难性遗忘以及使用可解释人工智能提高模型透明度是未来研究可能感兴趣的领域。