Suppr超能文献

利用多光谱成像技术对硬质小麦的籽粒品质和产量进行收获前的表型预测。

Preharvest phenotypic prediction of grain quality and yield of durum wheat using multispectral imaging.

机构信息

Integrative Crop Ecophysiology Group, Plant Physiology Section, Faculty of Biology, University of Barcelona, Diagonal 643, 08028, Barcelona, Spain.

AGROTECNIO (Center of Research in Agrotechnology), Av. Rovira Roure 191, 25198, Lleida, Spain.

出版信息

Plant J. 2022 Mar;109(6):1507-1518. doi: 10.1111/tpj.15648. Epub 2022 Feb 6.

Abstract

Durum wheat is an important cereal that is widely grown in the Mediterranean basin. In addition to high yield, grain quality traits are of high importance for farmers. The strong influence of climatic conditions makes the improvement of grain quality traits, like protein content, vitreousness, and test weight, a challenging task. Evaluation of quality traits post-harvest is time- and labor-intensive and requires expensive equipment, such as near-infrared spectroscopes or hyperspectral imagers. Predicting not only yield but also important quality traits in the field before harvest is of high value for breeders aiming to optimize resource allocation. Implementation of efficient approaches for trait prediction, such as the use of high-resolution spectral data acquired by a multispectral camera mounted on unmanned aerial vehicles (UAVs), needs to be explored. In this study, we have acquired multispectral image data with an 11-band multispectral camera mounted on a UAV and analyzed the data with machine learning (ML) models to predict grain yield and important quality traits in breeding micro-plots. Combining 11-band multispectral data for 34 cultivars and 16 environments allowed to develop ML models with good prediction capability. Applying the trained models to test sets explained a considerable degree of phenotypic variance with good accuracy showing r squared values of 0.84, 0.69, 0.64, and 0.61 and normalized root mean squared errors of 0.17, 0.07, 0.14, and 0.03 for grain yield, protein content, vitreousness, and test weight, respectively.

摘要

硬质小麦是一种重要的谷物,广泛种植在地中海盆地。除了高产量外,谷物品质性状对农民来说也非常重要。强烈的气候条件影响使得提高蛋白质含量、玻璃质、千粒重等品质性状成为一项具有挑战性的任务。收获后对品质性状的评估既耗时又耗力,需要昂贵的设备,如近红外光谱仪或高光谱成像仪。对于旨在优化资源分配的育种者来说,在收获前预测不仅是产量,还有重要的田间品质性状是非常有价值的。探索高效的性状预测方法的实施,例如使用安装在无人机上的高分辨率光谱数据,是必要的。在这项研究中,我们使用安装在无人机上的 11 波段多光谱相机获取多光谱图像数据,并使用机器学习 (ML) 模型分析数据,以预测育种小区的谷物产量和重要品质性状。结合 34 个品种和 16 个环境的 11 波段多光谱数据,可以开发出具有良好预测能力的 ML 模型。将训练好的模型应用于测试集,可以用较高的准确性解释相当大程度的表型方差,分别为 0.84、0.69、0.64 和 0.61,用于谷物产量、蛋白质含量、玻璃质和千粒重的标准化均方根误差分别为 0.17、0.07、0.14 和 0.03。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验