Suppr超能文献

CHRNA2:米色脂肪体温调节和代谢的新范例。

CHRNA2: a new paradigm in beige thermoregulation and metabolism.

机构信息

Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.

Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA.

出版信息

Trends Cell Biol. 2022 Jun;32(6):479-489. doi: 10.1016/j.tcb.2021.11.009. Epub 2021 Dec 21.

Abstract

The contribution of thermogenic adipocytes to maintain systemic metabolic homeostasis has been increasingly appreciated in recent years. It is now recognized that different types (e.g., brown, beige) and subtypes of thermogenic adipocytes may arise from various developmental origins. In addition to the adrenergic pathway, other signals can activate thermogenesis, including paracrine communication between immune cells within the adipose tissue niche and thermogenic adipocytes. In this opinion article we highlight the recently discovered beige-selective signaling between acetylcholine from immune cells and cholinergic receptor nicotinic alpha 2 subunit (CHRNA2) in activated beige adipocytes. We present our current knowledge of how this previously unrecognized adipose non-neuronal cholinergic signaling pathway mediates beige thermoregulation, and discuss its impact on whole-body fitness and its therapeutic potential as a novel target for combating metabolic disease.

摘要

近年来,产热脂肪细胞在维持全身代谢稳态方面的作用受到了越来越多的关注。现在人们已经认识到,不同类型(如棕色、米色)和亚型的产热脂肪细胞可能来自不同的发育起源。除了肾上腺素能途径外,其他信号也可以激活产热,包括脂肪组织龛位内免疫细胞与米色脂肪细胞之间的旁分泌通讯。在这篇观点文章中,我们强调了最近发现的免疫细胞乙酰胆碱与激活的米色脂肪细胞中烟碱型乙酰胆碱受体α2 亚单位(CHRNA2)之间的米色选择性信号。我们介绍了目前对于这种以前未被识别的脂肪非神经元胆碱能信号通路如何介导米色脂肪的体温调节的认识,并讨论了其对全身健康的影响及其作为治疗代谢性疾病的新靶点的潜在治疗意义。

相似文献

1
CHRNA2: a new paradigm in beige thermoregulation and metabolism.
Trends Cell Biol. 2022 Jun;32(6):479-489. doi: 10.1016/j.tcb.2021.11.009. Epub 2021 Dec 21.
2
Adrenergic-Independent Signaling via CHRNA2 Regulates Beige Fat Activation.
Dev Cell. 2020 Jul 6;54(1):106-116.e5. doi: 10.1016/j.devcel.2020.05.017. Epub 2020 Jun 12.
3
An immune-beige adipocyte communication via nicotinic acetylcholine receptor signaling.
Nat Med. 2018 Jun;24(6):814-822. doi: 10.1038/s41591-018-0032-8. Epub 2018 May 21.
4
Immune cell cholinergic signaling in adipose thermoregulation and immunometabolism.
Trends Immunol. 2022 Sep;43(9):718-727. doi: 10.1016/j.it.2022.07.006. Epub 2022 Aug 3.
5
Critical review of beige adipocyte thermogenic activation and contribution to whole-body energy expenditure.
Horm Mol Biol Clin Investig. 2017 Sep 1;31(2):/j/hmbci.2017.31.issue-2/hmbci-2017-0042/hmbci-2017-0042.xml. doi: 10.1515/hmbci-2017-0042.
6
UCP1 Dependent and Independent Thermogenesis in Brown and Beige Adipocytes.
Front Endocrinol (Lausanne). 2020 Jul 28;11:498. doi: 10.3389/fendo.2020.00498. eCollection 2020.
7
Beige Fat Maintenance; Toward a Sustained Metabolic Health.
Front Endocrinol (Lausanne). 2020 Sep 4;11:634. doi: 10.3389/fendo.2020.00634. eCollection 2020.
8
Molecular Regulation of Thermogenic Mechanisms in Beige Adipocytes.
Int J Mol Sci. 2024 Jun 7;25(12):6303. doi: 10.3390/ijms25126303.
9
Brite/beige fat and UCP1 - is it thermogenesis?
Biochim Biophys Acta. 2014 Jul;1837(7):1075-82. doi: 10.1016/j.bbabio.2014.02.008. Epub 2014 Feb 14.
10
Second messenger signaling mechanisms of the brown adipocyte thermogenic program: an integrative perspective.
Horm Mol Biol Clin Investig. 2017 Sep 26;31(2):/j/hmbci.2017.31.issue-2/hmbci-2017-0062/hmbci-2017-0062.xml. doi: 10.1515/hmbci-2017-0062.

引用本文的文献

1
Nonanoic acid and cholecystokinin induce beige adipogenesis.
Food Sci Biotechnol. 2024 Sep 10;34(3):709-720. doi: 10.1007/s10068-024-01699-6. eCollection 2025 Feb.
2
Chrna2-driven CRE Is Expressed in Beige Adipocytes.
Endocrinology. 2024 Nov 26;166(1). doi: 10.1210/endocr/bqae153.
3
Immune cell cholinergic signaling in adipose thermoregulation and immunometabolism.
Trends Immunol. 2022 Sep;43(9):718-727. doi: 10.1016/j.it.2022.07.006. Epub 2022 Aug 3.
4
The mechanisms of integral membrane protein biogenesis.
Nat Rev Mol Cell Biol. 2022 Feb;23(2):107-124. doi: 10.1038/s41580-021-00413-2. Epub 2021 Sep 23.

本文引用的文献

1
Acetylcholine-synthesizing macrophages in subcutaneous fat are regulated by β -adrenergic signaling.
EMBO J. 2021 Dec 15;40(24):e106061. doi: 10.15252/embj.2020106061. Epub 2021 Aug 30.
2
Nicotinic acetylcholine receptor redux: Discovery of accessories opens therapeutic vistas.
Science. 2021 Aug 13;373(6556). doi: 10.1126/science.abg6539.
3
Diurnal variations of brown fat thermogenesis and fat oxidation in humans.
Int J Obes (Lond). 2021 Nov;45(11):2499-2505. doi: 10.1038/s41366-021-00927-x. Epub 2021 Aug 2.
4
Intestinal hypoxia-inducible factor 2α regulates lactate levels to shape the gut microbiome and alter thermogenesis.
Cell Metab. 2021 Oct 5;33(10):1988-2003.e7. doi: 10.1016/j.cmet.2021.07.007. Epub 2021 Jul 29.
6
Diet-regulated production of PDGFcc by macrophages controls energy storage.
Science. 2021 Jul 2;373(6550). doi: 10.1126/science.abe9383.
7
Plasticity and heterogeneity of thermogenic adipose tissue.
Nat Metab. 2021 Jun;3(6):751-761. doi: 10.1038/s42255-021-00417-4. Epub 2021 Jun 22.
8
Secretin activates brown fat and induces satiation.
Nat Metab. 2021 Jun;3(6):798-809. doi: 10.1038/s42255-021-00409-4. Epub 2021 Jun 21.
9
Lipolysis drives expression of the constitutively active receptor GPR3 to induce adipose thermogenesis.
Cell. 2021 Jun 24;184(13):3502-3518.e33. doi: 10.1016/j.cell.2021.04.037. Epub 2021 May 27.
10
Mitochondrial TNAP controls thermogenesis by hydrolysis of phosphocreatine.
Nature. 2021 May;593(7860):580-585. doi: 10.1038/s41586-021-03533-z. Epub 2021 May 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验