Suppr超能文献

用于预测医疗影响的新冠病毒症状应用分析:来自北爱尔兰的证据。

COVID-19 Symptoms app analysis to foresee healthcare impacts: Evidence from Northern Ireland.

作者信息

Sousa José, Barata João, Woerden Hugo C van, Kee Frank

机构信息

Personal Health Data Science, SANO-Centre for Computational Medicine, Krakow, Poland.

Faculty of Medicine, Health and Life Sciences, Queen's University of Belfast, Belfast, Northern Ireland, United Kingdom.

出版信息

Appl Soft Comput. 2022 Feb;116:108324. doi: 10.1016/j.asoc.2021.108324. Epub 2021 Dec 20.

Abstract

Mobile health (mHealth) technologies, such as symptom tracking apps, are crucial for coping with the global pandemic crisis by providing near real-time, in situ information for the medical and governmental response. However, in such a dynamic and diverse environment, methods are still needed to support public health decision-making. This paper uses the lens of strong structuration theory to investigate networks of COVID-19 symptoms in the Belfast metropolitan area. A self-supervised machine learning method measuring information entropy was applied to the Northern Ireland COVIDCare app. The findings reveal: (1) relevant stratifications of disease symptoms, (2) particularities in health-wealth networks, and (3) the predictive potential of artificial intelligence to extract entangled knowledge from data in COVID-related apps. The proposed method proved to be effective for near real-time in-situ analysis of COVID-19 progression and to focus and complement public health decisions. Our contribution is relevant to an understanding of SARS-COV-2 symptom entanglements in localised environments. It can assist decision-makers in designing both reactive and proactive health measures that should be personalised to the heterogeneous needs of different populations. Moreover, near real-time assessment of pandemic symptoms using digital technologies will be critical to create early warning systems of emerging SARS-CoV-2 strains and predict the need for healthcare resources.

摘要

移动健康(mHealth)技术,如症状跟踪应用程序,对于应对全球大流行危机至关重要,因为它能为医疗和政府应对措施提供近乎实时的现场信息。然而,在这样一个动态多样的环境中,仍需要方法来支持公共卫生决策。本文运用强结构化理论视角,对贝尔法斯特大都市区的新冠病毒症状网络进行研究。一种测量信息熵的自监督机器学习方法被应用于北爱尔兰COVIDCare应用程序。研究结果显示:(1)疾病症状的相关分层,(2)健康-财富网络的特殊性,以及(3)人工智能从新冠相关应用程序的数据中提取纠缠知识的预测潜力。所提出的方法被证明对于新冠病毒进展的近乎实时现场分析是有效的,并且能够聚焦和补充公共卫生决策。我们的贡献有助于理解局部环境中新冠病毒症状的纠缠情况。它可以帮助决策者设计应针对不同人群的异质需求进行个性化的反应性和前瞻性健康措施。此外,利用数字技术对大流行症状进行近乎实时评估对于创建新冠病毒新毒株的早期预警系统以及预测医疗资源需求至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf5c/8686448/976d3abe16f6/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验