Suppr超能文献

使用深度学习检测汽车齿轮的齿缺陷

Detecting Teeth Defects on Automotive Gears Using Deep Learning.

机构信息

School of Engineering, University of Guelph, Guelph, ON N1G 1W2, Canada.

出版信息

Sensors (Basel). 2021 Dec 19;21(24):8480. doi: 10.3390/s21248480.

Abstract

Gears are a vital component in many complex mechanical systems. In automotive systems, and in particular vehicle transmissions, we rely on them to function properly on different types of challenging environments and conditions. However, when a gear is manufactured with a defect, the gear's integrity can become compromised and lead to catastrophic failure. The current inspection process used by an automotive gear manufacturer in Guelph, Ontario, requires human operators to visually inspect all gear produced. Yet, due to the quantity of gears manufactured, the diverse array of defects that can arise, the time requirements for inspection, and the reliance on the operator's inspection ability, the system suffers from poor scalability, and defects can be missed during inspection. In this work, we propose a machine vision system for automating the inspection process for gears with damaged teeth defects. The implemented inspection system uses a faster R-CNN network to identify the defects, and combines domain knowledge to reduce the manual inspection of non-defective gears by 66%.

摘要

齿轮是许多复杂机械系统中的重要组成部分。在汽车系统中,特别是车辆变速器中,我们依靠它们在不同类型的具有挑战性的环境和条件下正常运行。然而,当齿轮制造有缺陷时,齿轮的完整性可能会受到损害,并导致灾难性的故障。安大略省圭尔夫市的一家汽车齿轮制造商目前采用的检查流程要求人工操作员对生产的所有齿轮进行目视检查。然而,由于制造的齿轮数量、可能出现的各种缺陷、检查所需的时间以及对操作员检查能力的依赖,该系统的可扩展性较差,并且在检查过程中可能会漏掉缺陷。在这项工作中,我们提出了一种用于自动化检测齿部损伤缺陷齿轮的机器视觉系统。所实现的检测系统使用更快的 R-CNN 网络来识别缺陷,并结合领域知识将对无缺陷齿轮的手动检查减少 66%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc14/8707117/ddbf298b62d8/sensors-21-08480-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验