Suppr超能文献

水杨酸高孟基酯在气相和乙腈溶液中激发态衰变机制的理论研究

Theoretical Studies on the Excited-State Decay Mechanism of Homomenthyl Salicylate in a Gas Phase and an Acetonitrile Solution.

作者信息

Chang Xue-Ping, Zhang Teng-Shuo, Cui Ganglong

机构信息

College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, P. R. China.

College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.

出版信息

J Phys Chem A. 2022 Jan 13;126(1):16-28. doi: 10.1021/acs.jpca.1c07108. Epub 2021 Dec 29.

Abstract

Here, we employ the CASPT2//CASSCF and QM(CASPT2//CASSCF)/MM approaches to explore the photochemical mechanism of homomenthyl salicylate (HMS) in vacuum and an acetonitrile solution. The results show that in both cases, the excited-state relaxation mainly involves a spectroscopically "bright" S(ππ*) state and the lower-lying T and T states. In the major relaxation pathway, the photoexcited S keto system first undergoes an essentially barrierless excited-state intramolecular proton transfer (ESIPT) to generate the S enol minimum, near which a favorable S/S conical intersection decays the system to the S state followed by a reverse ground-state intramolecular proton transfer (GSIPT) to repopulate the initial S keto species. In the minor one, an S/T/T three-state intersection in the keto region makes the T state populated via direct and T-mediated intersystem crossing (ISC) processes. In the T state, an ESIPT occurs, which is followed by ISC near a T/S crossing point in the enol region to the S state and finally back to the S keto species. In addition, a T/S crossing point near the T keto minimum can also help the system decay to the S keto species. However, small spin-orbit couplings between T and S at these T/S crossing points make ISC to the S state very slow and make the system trapped in the T state for a while. The present work rationalizes not only the ultrafast excited-state decay dynamics of HMS but also its low quantum yield of phosphorescence at 77 K.

摘要

在此,我们采用CASPT2//CASSCF和QM(CASPT2//CASSCF)/MM方法,探索了水杨酸高孟基酯(HMS)在真空和乙腈溶液中的光化学机理。结果表明,在这两种情况下,激发态弛豫主要涉及光谱学上的“明亮”S(ππ*)态以及较低的T态和T态。在主要弛豫途径中,光激发的S酮式体系首先经历基本无势垒的激发态分子内质子转移(ESIPT)以生成S烯醇式最低点,在此附近一个有利的S/S锥形交叉点使体系衰减至S态,随后是反向基态分子内质子转移(GSIPT)以重新生成初始的S酮式物种。在次要途径中,酮式区域的一个S/T/T三态交叉点使T态通过直接和T介导的系间窜越(ISC)过程被占据。在T态中,发生ESIPT,随后在烯醇式区域的一个T/S交叉点附近发生ISC至S态,最终回到S酮式物种。此外,T酮式最低点附近的一个T/S交叉点也可帮助体系衰减至S酮式物种。然而,这些T/S交叉点处T态和S态之间较小的自旋 - 轨道耦合使得向S态的ISC非常缓慢,导致体系在T态中被困一段时间。本工作不仅阐明了HMS超快的激发态衰减动力学,还解释了其在77 K时较低的磷光量子产率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验