Suppr超能文献

通过精细热调节在无散热器热电发电机中同时实现灵活性和超高归一化功率密度

Simultaneous Realization of Flexibility and Ultrahigh Normalized Power Density in a Heatsink-Free Thermoelectric Generator via Fine Thermal Regulation.

作者信息

Zhu Sijing, Peng Ying, Gao Jie, Miao Lei, Lai Huajun, Liu Chengyan, Zhang Junhao, Zhang Yong, Zhou Shun, Koumoto Kunihito, Zhu Tiejun

机构信息

Guangxi Key Laboratory of Information Material, School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China.

Guangxi Key Laboratory of Precision Navigation Technology and Application, Guilin University of Electronic Technology, Guilin 541004, China.

出版信息

ACS Appl Mater Interfaces. 2022 Jan 12;14(1):1045-1055. doi: 10.1021/acsami.1c20367. Epub 2021 Dec 29.

Abstract

Wearable thermoelectric generators (w-TEGs) can incessantly convert body heat into electricity to power electronics. However, the low efficiency of thermoelectric materials, tiny terminal temperature difference, rigidity, and negligence of lateral heat transfer preclude broad utilization of w-TEGs. In this work, we employ finite element simulation to find the key factors for simultaneous realization of flexibility and ultrahigh normalized power density. Using melamine foam with an ultralow thermal conductivity (0.03 W/m K) as the encapsulation material, a novel lightweight π-type w-TEG with no heatsink and excellent stretchability, comfortability, processability, and cost efficiency has been fabricated. At an ambient temperature of 24 °C, the maximum power density of the w-TEG reached 7 μW/cm (sitting) and 29 μW/cm (walking). Under suitable heat exchange conditions (heatsink with 1 m/s air velocity), 32 pairs of w-TEGs can generate 66 mV voltage and 60 μW/cm power density. The output performance of our TEG is remarkably superior to that of previously reported w-TEGs. Besides, the practicality of our w-TEG was showcased by successfully driving a quartz watch at room temperature.

摘要

可穿戴式热电发电机(w-TEG)能够持续地将人体热量转化为电能,为电子设备供电。然而,热电材料效率低、终端温差小、刚性以及横向热传递被忽视等问题,阻碍了w-TEG的广泛应用。在这项工作中,我们采用有限元模拟来找出同时实现柔韧性和超高归一化功率密度的关键因素。使用超低导热率(0.03W/m·K)的三聚氰胺泡沫作为封装材料,制备了一种新型的无散热器、具有出色拉伸性、舒适性、可加工性和成本效益的轻质π型w-TEG。在24℃的环境温度下,w-TEG的最大功率密度在坐着时达到7μW/cm²,行走时达到29μW/cm²。在合适的热交换条件下(风速为1m/s的散热器),32对w-TEG可产生66mV的电压和60μW/cm²的功率密度。我们的TEG的输出性能明显优于先前报道的w-TEG。此外,我们的w-TEG在室温下成功驱动石英手表,展示了其实用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验