Department of Microbiology, University of Innsbruck, Innsbruck, Austria.
Institute of Food Technology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria.
PLoS One. 2021 Dec 31;16(12):e0262180. doi: 10.1371/journal.pone.0262180. eCollection 2021.
Trichoderma atroviride (Ascomycota, Sordariomycetes) is a well-known mycoparasite applied for protecting plants against fungal pathogens. Its mycoparasitic activity involves processes shared with plant and human pathogenic fungi such as the production of cell wall degrading enzymes and secondary metabolites and is tightly regulated by environmental cues. In eukaryotes, the conserved Target of Rapamycin (TOR) kinase serves as a central regulator of cellular growth in response to nutrient availability. Here we describe how alteration of the activity of TOR1, the single and essential TOR kinase of T. atroviride, by treatment with chemical TOR inhibitors or by genetic manipulation of selected TOR pathway components affected various cellular functions. Loss of TSC1 and TSC2, that are negative regulators of TOR complex 1 (TORC1) in mammalian cells, resulted in altered nitrogen source-dependent growth of T. atroviride, reduced mycoparasitic overgrowth and, in the case of Δtsc1, a diminished production of numerous secondary metabolites. Deletion of the gene encoding the GTPase RHE2, whose mammalian orthologue activates mTORC1, led to rapamycin hypersensitivity and altered secondary metabolism, but had an only minor effect on vegetative growth and mycoparasitic overgrowth. The latter also applied to mutants missing the npr1-1 gene that encodes a fungus-specific kinase known as TOR target in yeast. Genome-wide transcriptome analysis confirmed TOR1 as a regulatory hub that governs T. atroviride metabolism and processes associated to ribosome biogenesis, gene expression and translation. In addition, mycoparasitism-relevant genes encoding terpenoid and polyketide synthases, peptidases, glycoside hydrolases, small secreted cysteine-rich proteins, and G protein coupled receptors emerged as TOR1 targets. Our results provide the first in-depth insights into TOR signaling in a fungal mycoparasite and emphasize its importance in the regulation of processes that critically contribute to the antagonistic activity of T. atroviride.
深绿木霉(子囊菌门,散囊菌纲)是一种著名的真菌寄生菌,用于保护植物免受真菌病原体的侵害。其真菌寄生活性涉及与植物和人类病原真菌共享的过程,例如细胞壁降解酶和次生代谢物的产生,并且受到环境线索的严格调节。在真核生物中,保守的雷帕霉素靶蛋白(TOR)激酶作为细胞生长的中央调节剂,以响应营养物质的可用性。在这里,我们描述了通过化学 TOR 抑制剂处理或通过遗传操作选定的 TOR 途径成分如何改变 T. atroviride 中单一且必需的 TOR 激酶 TOR1 的活性,从而影响各种细胞功能。缺失 TSC1 和 TSC2,它们是哺乳动物细胞中 TOR 复合物 1(TORC1)的负调节剂,导致 T. atroviride 的氮源依赖性生长改变,真菌寄生过度生长减少,并且在 Δtsc1 的情况下,许多次生代谢产物的产生减少。编码 GTPase RHE2 的基因缺失,其哺乳动物同源物激活 mTORC1,导致雷帕霉素敏感性增加和次生代谢改变,但对营养生长和真菌寄生过度生长的影响较小。后者也适用于缺失编码真菌特异性激酶的 npr1-1 基因的突变体,该激酶在酵母中被称为 TOR 靶标。全基因组转录组分析证实 TOR1 是一个调节枢纽,可调节 T. atroviride 的代谢和与核糖体生物发生、基因表达和翻译相关的过程。此外,作为 TOR1 靶标的与真菌寄生相关的基因编码萜烯和聚酮合酶、肽酶、糖苷水解酶、小分泌半胱氨酸丰富的蛋白质和 G 蛋白偶联受体也出现了。我们的研究结果提供了真菌寄生菌中 TOR 信号的深入见解,并强调了其在调节对 T. atroviride 拮抗活性至关重要的过程中的重要性。