Zhang Meng, Ma Si-Cong, Tan Jia-Le, Wang Jian, Bai Xue, Dong Zhong-Yi, Zhang Qing-Xue
Department of Obstetrics and Gynecology, Reproductive Medicine Centre, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
Front Oncol. 2021 Dec 16;11:772604. doi: 10.3389/fonc.2021.772604. eCollection 2021.
Homologous recombination deficiency (HRD) is characterized by overall genomic instability and has emerged as an indispensable therapeutic target across various tumor types, particularly in ovarian cancer (OV). Unfortunately, current detection assays are far from perfect for identifying every HRD patient. The purpose of this study was to infer HRD from the landscape of copy number variation (CNV).
Genome-wide CNV landscape was measured in OV patients from the Australian Ovarian Cancer Study (AOCS) clinical cohort and >10,000 patients across 33 tumor types from The Cancer Genome Atlas (TCGA). HRD-predictive CNVs at subchromosomal resolution were identified through exploratory analysis depicting the CNV landscape of HRD non-HRD OV patients and independently validated using TCGA and AOCS cohorts. Gene-level CNVs were further analyzed to explore their potential predictive significance for HRD across tumor types at genetic resolution.
At subchromosomal resolution, 8q24.2 amplification and 5q13.2 deletion were predominantly witnessed in HRD patients (both < 0.0001), whereas 19q12 amplification occurred mainly in non-HRD patients ( < 0.0001), compared with their corresponding counterparts within TCGA-OV. The predictive significance of 8q24.2 amplification ( < 0.0001), 5q13.2 deletion ( = 0.0056), and 19q12 amplification ( = 0.0034) was externally validated within AOCS. Remarkably, pan-cancer analysis confirmed a cross-tumor predictive role of 8q24.2 amplification for HRD ( < 0.0001). Further analysis of CNV in 8q24.2 at genetic resolution revealed that amplifications of the oncogenes, ( = 0.0001) and ( = 0.0004), located on this fragment were also associated with HRD in a pan-cancer manner.
The CNV landscape serves as a generalized predictor of HRD in cancer patients not limited to OV. The detection of CNV at subchromosomal or genetic resolution could aid in the personalized treatment of HRD patients.
同源重组缺陷(HRD)的特征是整体基因组不稳定,已成为多种肿瘤类型(尤其是卵巢癌(OV))不可或缺的治疗靶点。不幸的是,目前的检测方法在识别每一位HRD患者方面远非完美。本研究的目的是从拷贝数变异(CNV)格局推断HRD。
在澳大利亚卵巢癌研究(AOCS)临床队列的OV患者以及来自癌症基因组图谱(TCGA)的33种肿瘤类型的10000多名患者中测量全基因组CNV格局。通过探索性分析确定亚染色体分辨率下的HRD预测性CNV,该分析描绘了HRD和非HRD OV患者的CNV格局,并使用TCGA和AOCS队列进行独立验证。进一步分析基因水平的CNV,以探索其在基因分辨率下对跨肿瘤类型HRD的潜在预测意义。
在亚染色体分辨率下,与TCGA-OV中的相应对象相比,HRD患者中主要观察到8q24.2扩增和5q13.2缺失(均P<0.0001),而19q12扩增主要发生在非HRD患者中(P<0.0001)。8q24.2扩增(P<0.0001)、5q13.2缺失(P=0.0056)和19q12扩增(P=0.0034)的预测意义在AOCS中得到外部验证。值得注意的是,泛癌分析证实了8q24.2扩增对HRD的跨肿瘤预测作用(P<0.0001)。在基因分辨率下对8q24.2中的CNV进行的进一步分析表明,位于该片段上的癌基因MYC(P=0.0001)和CCND1(P=0.0004)的扩增也以泛癌方式与HRD相关。
CNV格局可作为不限于OV的癌症患者HRD的通用预测指标。在亚染色体或基因分辨率下检测CNV有助于HRD患者的个性化治疗。