Suppr超能文献

利用机器学习(深度学习)自动分类外卖食品店的菜肴类型。

Automatic classification of takeaway food outlet cuisine type using machine (deep) learning.

作者信息

Bishop Tom R P, von Hinke Stephanie, Hollingsworth Bruce, Lake Amelia A, Brown Heather, Burgoine Thomas

机构信息

UKCRC Centre for Diet and Activity Research (CEDAR), MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK.

School of Economics, University of Bristol, Bristol BS8 1TU, UK.

出版信息

Mach Learn Appl. 2021 Dec 15;6:None. doi: 10.1016/j.mlwa.2021.100106.

Abstract

BACKGROUND AND PURPOSE

Researchers have not disaggregated neighbourhood exposure to takeaway ('fast-') food outlets by cuisine type sold, which would otherwise permit examination of differential impacts on diet, obesity and related disease. This is partly due to the substantial resource challenge of manual classification of unclassified takeaway outlets at scale. We describe the development of a new model to automatically classify takeaway food outlets, by 10 major cuisine types, based on business name alone.

MATERIAL AND METHODS

We used machine (deep) learning, and specifically a Long Short Term Memory variant of a Recurrent Neural Network, to develop a predictive model trained on labelled outlets (n 14,145), from an online takeaway food ordering platform. We validated the accuracy of predictions on unseen labelled outlets (n 4,000) from the same source.

RESULTS

Although accuracy of prediction varied by cuisine type, overall the model (or 'classifier') made a correct prediction approximately three out of four times. We demonstrated the potential of the classifier to public health researchers and for surveillance to support decision-making, through using it to characterise nearly 55,000 takeaway food outlets in England by cuisine type, for the first time.

CONCLUSIONS

Although imperfect, we successfully developed a model to classify takeaway food outlets, by 10 major cuisine types, from business name alone, using innovative data science methods. We have made the model available for use elsewhere by others, including in other contexts and to characterise other types of food outlets, and for further development.

摘要

背景与目的

研究人员尚未按所售菜肴类型对社区接触外卖(“快餐”)食品店的情况进行分类,否则将能够研究其对饮食、肥胖及相关疾病的不同影响。部分原因在于大规模人工分类未分类外卖店面临巨大的资源挑战。我们描述了一种新模型的开发,该模型仅基于店名就能自动将外卖食品店按10种主要菜肴类型进行分类。

材料与方法

我们使用机器学习(深度学习),具体而言是循环神经网络的长短期记忆变体,来开发一个预测模型,该模型在来自在线外卖订餐平台的带标签店铺(n = 14,145)上进行训练。我们对来自同一来源的未见过的带标签店铺(n = 4,000)的预测准确性进行了验证。

结果

尽管预测准确性因菜肴类型而异,但总体而言,该模型(或“分类器”)大约每四次中有三次能做出正确预测。我们首次通过使用该分类器按菜肴类型对英格兰近55,000家外卖食品店进行特征描述,展示了该分类器对公共卫生研究人员以及对支持决策的监测的潜力。

结论

尽管存在不足,但我们成功开发了一种模型,仅使用创新的数据科学方法就能从店名中按10种主要菜肴类型对外卖食品店进行分类。我们已将该模型提供给其他地方的其他人使用,包括在其他背景下以及用于描述其他类型的食品店,并用于进一步开发。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/00ea/8700226/e3b03483cef8/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验