Department of Chemistry, University of Warwick, Coventry, United Kingdom CV4 7AL.
Acc Chem Res. 2022 Jan 18;55(2):209-220. doi: 10.1021/acs.accounts.1c00665. Epub 2022 Jan 4.
The processes which occur after molecules absorb light underpin an enormous range of fundamental technologies and applications, including photocatalysis to enable new chemical transformations, sunscreens to protect against the harmful effects of UV overexposure, efficient photovoltaics for energy generation from sunlight, and fluorescent probes to image the intricate details of complex biomolecular structures. Reflecting this broad range of applications, an enormously versatile set of experiments are now regularly used to interrogate light-driven chemical dynamics, ranging from the typical ultrafast transient absorption spectroscopy used in many university laboratories to the inspiring central facilities around the world, such as the next-generation of X-ray free-electron lasers.Computer simulations of light-driven molecular and material dynamics are an essential route to analyzing the enormous amount of transient electronic and structural data produced by these experimental sources. However, to date, the direct simulation of molecular photochemistry remains a frontier challenge in computational chemical science, simultaneously demanding the accurate treatment of molecular electronic structure, nuclear dynamics, and the impact of nonadiabatic couplings.To address these important challenges and to enable new computational methods which can be integrated with state-of-the-art experimental capabilities, the past few years have seen a burst of activity in the development of "direct" quantum dynamics methods, merging the machine learning of potential energy surfaces (PESs) and nonadiabatic couplings with accurate quantum propagation schemes such as the multiconfiguration time-dependent Hartree (MCTDH) method. The result of this approach is a new generation of direct quantum dynamics tools in which PESs are generated in tandem with wave function propagation, enabling accurate "on-the-fly" simulations of molecular photochemistry. These simulations offer an alternative route toward gaining quantum dynamics insights, circumventing the challenge of generating electronic structure data for PES fitting by instead only demanding expensive energy evaluations as and when they are needed.In this Account, we describe the chronological evolution of our own contributions to this field, focusing on describing the algorithmic developments that enable direct MCTDH simulations for complex molecular systems moving on multiple coupled electronic states. Specifically, we highlight active learning strategies for generating PESs during grid-based quantum chemical dynamics simulations, and we discuss the development and impact of novel diabatization schemes to enable direct grid-based simulations of photochemical dynamics; these developments are highlighted in a series of benchmark molecular simulations of systems containing multiple nuclear degrees of freedom moving on multiple coupled electronic states. We hope that the ongoing developments reported here represent a major step forward in tools for modeling excited-state chemistry such as photodissociation, proton and electron transfer, and ultrafast energy dissipation in complex molecular systems.
分子吸收光后发生的过程是一系列基础技术和应用的基础,包括光催化以实现新的化学转化、防晒霜以防止紫外线过度暴露的有害影响、高效光伏以从阳光中产生能源,以及荧光探针以成像复杂生物分子结构的精细细节。反映了这种广泛的应用,现在经常使用各种非常灵活的实验来研究光驱动的化学动力学,从许多大学实验室使用的典型超快瞬态吸收光谱到世界各地的鼓舞人心的中央设施,例如新一代的自由电子 X 射线激光器。
光驱动分子和材料动力学的计算机模拟是分析这些实验源产生的大量瞬态电子和结构数据的重要途径。然而,迄今为止,分子光化学的直接模拟仍然是计算化学科学中的一个前沿挑战,同时需要精确处理分子电子结构、核动力学和非绝热耦合的影响。
为了应对这些重要挑战,并为能够与最先进的实验能力集成的新计算方法提供支持,过去几年中,“直接”量子动力学方法的发展出现了爆发式增长,将势能面 (PES) 和非绝热耦合的机器学习与精确量子传播方案(如多组态含时哈特里 (MCTDH) 方法)相结合。这种方法的结果是新一代的直接量子动力学工具,其中 PES 与波函数传播一起生成,从而能够对分子光化学进行准确的“实时”模拟。这些模拟提供了获得量子动力学见解的替代途径,避免了通过为 PES 拟合生成电子结构数据来产生挑战,而是仅在需要时才需要昂贵的能量评估。
在本述评中,我们描述了我们自己在该领域的贡献的时间顺序演变,重点描述了能够对多个耦合电子态上的复杂分子系统进行直接 MCTDH 模拟的算法发展。具体来说,我们强调了在基于网格的量子化学动力学模拟过程中生成 PES 的主动学习策略,以及讨论了开发和影响用于直接基于网格的光化学动力学模拟的新键合方案;这些发展在一系列包含多个核自由度在多个耦合电子态上运动的系统的分子模拟中得到了强调。我们希望这里报道的持续发展代表了用于建模激发态化学的工具的重大进展,例如光解、质子和电子转移以及复杂分子系统中的超快能量耗散。