Wang Kaihao, Tang Ruijie, Wang Siyuan, Xiong Yuyan, Wang Wenyao, Chen Guihao, Zhang Kuo, Li Ping, Tang Yi-Da
Departments of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; and.
Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Molecular Cardiovascular Science, Beijing, China.
J Cardiovasc Pharmacol. 2022 Feb 1;79(2):217-228. doi: 10.1097/FJC.0000000000001174.
Over the past decade, histone deacetylases (HDACs) has been proven to manipulate development and exacerbation of cardiovascular diseases, including myocardial ischemia/reperfusion injury, cardiac hypertrophy, ventricular remodeling, and myocardial fibrosis. Inhibition of HDACs, especially class-I HDACs, is potent to the protection of ischemic myocardium after ischemia/reperfusion (I/R). Herein, we examine whether mocetinostat (MGCD0103, MOCE), a class-I selective HDAC inhibitor in phase-II clinical trial, shows cardioprotection under I/R in vivo and in vitro, if so, reveal its potential pharmacological mechanism to provide an experimental and theoretical basis for mocetinostat usage in a clinical setting. Human cardiac myocytes (HCMs) were exposed to hypoxia and reoxygenation (H/R), with or without mocetinostat treatment. H/R reduced mitochondrial membrane potential and induced HCMs apoptosis. Mocetinostat pretreatment reversed these H/R-induced mitochondrial damage and cellular apoptosis and upregulated CREB, p-CREB, and PGC-1α in HCMs during H/R. Transfection with small interfering RNA against PGC-1α or CREB abolished the protective effects of mocetinostat on cardiomyocytes undergoing H/R. In vivo, mocetinostat was demonstrated to protect myocardial injury posed by myocardial I/R via the activation of CREB and upregulation of PGC-1α. Mocetinostat (MGCD0103) can protect myocardium from I/R injury through mitochondrial protection mediated by CREB/PGC-1α pathway. Therefore, activation of the CREB/PGC-1α signaling pathway via the inhibition of Class-I HDACs may be a promising new therapeutic strategy for alleviating myocardial reperfusion injury.
在过去十年中,已证实组蛋白去乙酰化酶(HDACs)可调控心血管疾病的发生发展及病情加重,这些疾病包括心肌缺血/再灌注损伤、心脏肥大、心室重构和心肌纤维化。抑制HDACs,尤其是I类HDACs,对缺血/再灌注(I/R)后缺血心肌具有强大的保护作用。在此,我们研究在II期临床试验中的I类选择性HDAC抑制剂莫西司他(MGCD0103,MOCE)在体内和体外I/R情况下是否具有心脏保护作用,若有,揭示其潜在的药理机制,为莫西司他在临床应用提供实验和理论依据。将人心脏心肌细胞(HCMs)暴露于缺氧和复氧(H/R)环境中,同时给予或不给予莫西司他处理。H/R降低了线粒体膜电位并诱导HCMs凋亡。莫西司他预处理可逆转这些由H/R诱导的线粒体损伤和细胞凋亡,并在H/R期间上调HCMs中的CREB、p-CREB和PGC-1α。用针对PGC-1α或CREB的小干扰RNA转染可消除莫西司他对经历H/R的心肌细胞的保护作用。在体内,莫西司他被证明可通过激活CREB和上调PGC-1α来保护心肌免受心肌I/R造成的损伤。莫西司他(MGCD0103)可通过CREB/PGC-1α途径介导的线粒体保护作用来保护心肌免受I/R损伤。因此,通过抑制I类HDACs激活CREB/PGC-1α信号通路可能是减轻心肌再灌注损伤的一种有前景的新治疗策略。