Martins Sofia, de Rojas Julius, Tan Zhengwei, Cialone Matteo, Lopeandia Aitor, Herrero-Martín Javier, Costa-Krämer José L, Menéndez Enric, Sort Jordi
Departament de Física, Universitat Autònoma de Barcelona, E-08193 Cerdanyola del Vallès, Spain.
CNR-SPIN Genova, C.so F. M. Perrone 24, Genova, 16152, Italy.
Nanoscale. 2022 Jan 20;14(3):842-852. doi: 10.1039/d1nr06210g.
Voltage control of magnetism electric-field-driven ion migration (magneto-ionics) has generated intense interest due to its potential to greatly reduce heat dissipation in a wide range of information technology devices, such as magnetic memories, spintronic systems or artificial neural networks. Among other effects, oxygen ion migration in transition-metal-oxide thin films can lead to the generation or full suppression of controlled amounts of ferromagnetism ('ON-OFF' magnetic transitions) in a non-volatile and fully reversible manner. However, oxygen magneto-ionic rates at room temperature are generally considered too slow for industrial applications. Here, we demonstrate that sub-second ON-OFF transitions in electrolyte-gated paramagnetic cobalt oxide films can be achieved by drastically reducing the film thickness from >200 nm down to 5 nm. Remarkably, cumulative magneto-ionic effects can be generated by applying voltage pulses at frequencies as high as 100 Hz. Neuromorphic-like dynamic effects occur at these frequencies, including potentiation (cumulative magnetization increase), depression (, partial recovery of magnetization with time), threshold activation, and spike time-dependent magnetic plasticity (learning and forgetting capabilities), mimicking many of the biological synapse functions. The systems under investigation show features that could be useful for the design of artificial neural networks whose magnetic properties would be governed with voltage.
磁性的电压控制——电场驱动的离子迁移(磁离子学)因其在广泛的信息技术设备(如磁存储器、自旋电子系统或人工神经网络)中大幅降低热耗散的潜力而引起了广泛关注。在其他效应中,过渡金属氧化物薄膜中的氧离子迁移可以以非易失性和完全可逆的方式导致可控量铁磁性的产生或完全抑制(“开-关”磁转变)。然而,室温下的氧磁离子速率通常被认为对于工业应用来说太慢。在此,我们证明,通过将电解质门控顺磁性钴氧化物薄膜的厚度从大于200纳米大幅减小至5纳米,可以实现亚秒级的开-关转变。值得注意的是,通过施加高达100赫兹频率的电压脉冲,可以产生累积磁离子效应。在这些频率下会出现类似神经形态的动态效应,包括增强(累积磁化增加)、抑制(随着时间部分恢复磁化)、阈值激活以及尖峰时间依赖性磁可塑性(学习和遗忘能力),模拟了许多生物突触功能。所研究的系统展现出的特性可能有助于设计其磁性可由电压控制的人工神经网络。