UOS STIIMA Lecco-Human-Centered, Smart & Safe, Living Environment, Italian National Research Council (CNR), Lecco, Italy.
Laboratory of Neuromotor Physiology, IRCCS Fondazione Santa Lucia, Rome, Italy.
J Neurophysiol. 2022 Feb 1;127(2):529-547. doi: 10.1152/jn.00379.2021. Epub 2022 Jan 5.
Synergistic models have been employed to investigate motor coordination separately in the muscular and kinematic domains. However, the relationship between muscle synergies, constrained to be non-negative, and kinematic synergies, whose elements can be positive and negative, has received limited attention. Existing algorithms for extracting synergies from combined kinematic and muscular data either do not enforce non-negativity constraints or separate non-negative variables into positive and negative components. We propose a mixed matrix factorization (MMF) algorithm based on a gradient descent update rule that overcomes these limitations. It allows to directly assess the relationship between kinematic and muscle activity variables, by enforcing the non-negativity constrain on a subset of variables. We validated the algorithm on simulated kinematic-muscular data generated from known spatial synergies and temporal coefficients, by evaluating the similarity between extracted and ground truth synergies and temporal coefficients when the data are corrupted by different noise levels. We also compared the performance of MMF to that of non-negative matrix factorization applied to separate positive and negative components (NMFpn). Finally, we factorized kinematic and electromyographic data collected during upper-limb movements to demonstrate the potential of the algorithm. MMF achieved almost perfect reconstruction on noiseless simulated data. It performed better than NMFpn in recovering the correct spatial synergies and temporal coefficients with noisy simulated data. It also allowed to correctly select the original number of ground truth synergies. We showed meaningful applicability to real data; MMF can also be applied to any multivariate data that contain both non-negative and unconstrained variables. The mixed matrix factorization (MMF) is a novel method for extracting kinematic-muscular synergies. The previous state of the art algorithm (NMFpn) factorizes separately positive and rectified negative waveforms; the MMF instead employs a gradient descent method to factorize mixed kinematic unconstrained data and muscular non-negative data. MMF achieves perfect reconstruction on noiseless data, improving the NMFpn. MMF shows promising applicability on real data.
协同模型已被用于分别在肌肉和运动学领域研究运动协调。然而,受限于非负性的肌肉协同与元素可以为正、负的运动学协同之间的关系受到的关注有限。现有的从运动学和肌肉数据中提取协同的算法要么不强制非负约束,要么将非负变量分离成正、负分量。我们提出了一种基于梯度下降更新规则的混合矩阵分解(MMF)算法,该算法克服了这些限制。它允许通过对变量的子集施加非负约束,直接评估运动学和肌肉活动变量之间的关系。我们通过评估在数据受到不同噪声水平干扰时提取和真实协同与时间系数之间的相似性,在已知空间协同和时间系数生成的模拟运动学-肌肉数据上验证了该算法。我们还比较了 MMF 与应用于分离正、负分量的非负矩阵分解(NMFpn)的性能。最后,我们对上肢运动期间收集的运动学和肌电图数据进行了分解,以展示该算法的潜力。MMF 在无噪声模拟数据上实现了近乎完美的重建。在恢复噪声模拟数据中的正确空间协同和时间系数方面,它的性能优于 NMFpn。它还允许正确选择原始数量的真实协同。我们证明了该算法在真实数据上的有意义的适用性;MMF 也可以应用于任何包含非负和无约束变量的多变量数据。混合矩阵分解(MMF)是一种用于提取运动学-肌肉协同的新方法。之前的最先进算法(NMFpn)分别对正和校正后的负波进行分解;而 MMF 则采用梯度下降方法对混合运动学无约束数据和肌肉非负数据进行分解。MMF 在无噪声数据上实现了完美的重建,提高了 NMFpn 的性能。MMF 在真实数据上表现出有前景的适用性。