Department of Zoology, School of Natural Sciences, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.
Cell Tissue Res. 2022 Apr;388(1):49-62. doi: 10.1007/s00441-021-03564-y. Epub 2022 Jan 6.
Spatial and temporal control of chondrogenesis generates precise, species-specific patterns of skeletal structures in the developing vertebrate limb. The pattern-template is laid down when mesenchymal cells at the core of the early limb bud condense and undergo chondrogenic differentiation. Although the mechanisms involved in organising such complex patterns are not fully understood, the interplay between BMP and Wnt signalling pathways is fundamental. Primary embryonic limb bud cells grown under high-density micromass culture conditions spontaneously create a simple cartilage nodule pattern, presenting a model to investigate pattern generation. We describe a novel analytical approach to quantify geometric properties and spatial relationships between chondrogenic condensations, utilizing the micromass model. We follow the emergence of pattern in live cultures with nodules forming at regular distances, growing and changing shape over time. Gene expression profiling supports rapid chondrogenesis and transition to hypertrophy, mimicking the process of endochondral ossification within the limb bud. Manipulating the signalling environment through addition of BMP or Wnt ligands, as well as the BMP pathway antagonist Noggin, altered the differentiation profile and nodule pattern. BMP2 addition increased chondrogenesis while WNT3A or Noggin had the opposite effect, but with distinct pattern outcomes. Titrating these pro- and anti-chondrogenic factors and examining the resulting patterns support the hypothesis that regularly spaced cartilage nodules formed by primary limb bud cells in micromass culture are influenced by the balance of Wnt and BMP signalling under a Turing-like mechanism. This study demonstrates an approach for investigating the mechanisms governing chondrogenic spatial organization using simple micromass culture.
软骨生成的时空控制在发育中的脊椎动物肢体中产生了精确的、具有物种特异性的骨骼结构模式。当早期肢体芽核心的间充质细胞凝聚并经历软骨生成分化时,模式模板就被奠定下来。尽管组织此类复杂模式的机制尚未完全理解,但 BMP 和 Wnt 信号通路之间的相互作用是基础。在高密度微团培养条件下生长的原代胚胎肢体芽细胞自发地形成简单的软骨结节模式,提供了一个用于研究模式生成的模型。我们描述了一种新的分析方法,用于量化软骨生成凝聚之间的几何特性和空间关系,利用微团模型。我们用活体培养物中的模式出现来描述,这些培养物中的结节以规则的距离形成,随着时间的推移而生长和改变形状。基因表达谱支持快速软骨生成和向肥大的转变,模拟了肢体芽内软骨内骨化的过程。通过添加 BMP 或 Wnt 配体以及 BMP 途径拮抗剂 Noggin 来操纵信号环境,改变了分化谱和结节模式。BMP2 的添加增加了软骨生成,而 WNT3A 或 Noggin 则有相反的效果,但模式结果不同。滴定这些促软骨生成和抗软骨生成因子,并检查由此产生的模式,支持这样一种假设,即在微团培养中,原代肢体芽细胞形成的规则间隔的软骨结节受到 Turing 样机制下 Wnt 和 BMP 信号平衡的影响。这项研究表明了一种使用简单微团培养来研究控制软骨生成空间组织的机制的方法。