Suppr超能文献

可持续金融的过去、现在与未来:通过对学术研究的机器学习进行大数据分析得出的见解

Past, present, and future of sustainable finance: insights from big data analytics through machine learning of scholarly research.

作者信息

Kumar Satish, Sharma Dipasha, Rao Sandeep, Lim Weng Marc, Mangla Sachin Kumar

机构信息

Department of Management Studies, Malaviya National Institute of Technology Jaipur, Jaipur, Rajasthan 302017 India.

School of Business, Swinburne University of Technology, Jalan Simpang Tiga, 93350 Kuching, Sarawak Malaysia.

出版信息

Ann Oper Res. 2022 Jan 4:1-44. doi: 10.1007/s10479-021-04410-8.

Abstract

Sustainable finance is a rich field of research. Yet, existing reviews remain limited due to the piecemeal insights offered through a sub-set rather than the entire corpus of sustainable finance. To address this gap, this study aims to conduct a large-scale review that would provide a state-of-the-art overview of the performance and intellectual structure of sustainable finance. To do so, this study engages in a review of sustainable finance research using big data analytics through machine learning of scholarly research. In doing so, this study unpacks the most influential articles and top contributing journals, authors, institutions, and countries, as well as the methodological choices and research contexts for sustainable finance research. In addition, this study reveals insights into seven major themes of sustainable finance research, namely socially responsible investing, climate financing, green financing, impact investing, carbon financing, energy financing, and governance of sustainable financing and investing. To drive the field forward, this study proposes several suggestions for future sustainable finance research, which include developing and diffusing innovative sustainable financing instruments, magnifying and managing the profitability and returns of sustainable financing, making sustainable finance more sustainable, devising and unifying policies and frameworks for sustainable finance, tackling greenwashing of corporate sustainability reporting in sustainable finance, shining behavioral finance on sustainable finance, and leveraging the power of new-age technologies such as artificial intelligence, blockchain, internet of things, and machine learning for sustainable finance.

摘要

可持续金融是一个丰富的研究领域。然而,由于现有综述仅通过可持续金融的一个子集而非全部文献提供零散的见解,其仍然存在局限性。为弥补这一差距,本研究旨在进行一项大规模综述,以提供可持续金融绩效和知识结构的最新概述。为此,本研究通过对学术研究的机器学习,利用大数据分析对可持续金融研究进行综述。在此过程中,本研究剖析了最具影响力的文章以及贡献最大的期刊、作者、机构和国家,以及可持续金融研究的方法选择和研究背景。此外,本研究揭示了可持续金融研究的七个主要主题的见解,即社会责任投资、气候融资、绿色融资、影响力投资、碳融资、能源融资以及可持续融资与投资的治理。为推动该领域向前发展,本研究为未来的可持续金融研究提出了若干建议,包括开发和推广创新的可持续融资工具、扩大和管理可持续融资的盈利能力和回报、使可持续金融更具可持续性、制定和统一可持续金融的政策和框架、应对可持续金融中企业可持续发展报告的漂绿行为、将行为金融应用于可持续金融,以及利用人工智能、区块链、物联网和机器学习等新时代技术的力量推动可持续金融发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe0c/8723819/35b5686d4f83/10479_2021_4410_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验