Suppr超能文献

利用小型无人机系统(sUAS)信息开发用于估算高分辨率地表能量平衡产品的高性能计算工具。

Development of High Performance Computing Tools for Estimation of High-Resolution Surface Energy Balance Products Using sUAS Information.

作者信息

Nassar Ayman, Torres Alfonso, Merwade Venkatesh, Dey Sayan, Zhao Lan, Kim I Luk, Kustas William P, Nieto Hector, Hipps Lawrence, Gao Rui, Alfieri Joseph, Prueger John, Alsina Maria Mar, McKee Lynn, Coopmans Calvin, Sanchez Luis, Dokoozlian Nick, Bambach Ortiz Nicolas, Mcelrone Andrew J

机构信息

Utah State University, Department of Civil and Environmental Engineering, Logan, UT, United States.

Utah Water Research Lab, Utah State University.

出版信息

Proc SPIE Int Soc Opt Eng. 2021;11747. doi: 10.1117/12.2587763. Epub 2021 Apr 12.

Abstract

(small-Unmanned Aircraft System) and advanced surface energy balance models allow detailed assessment and monitoring (at plant scale) of different (agricultural, urban, and natural) environments. Significant progress has been made in the understanding and modeling of atmosphere-plant-soil interactions and numerical quantification of the internal processes at plant scale. Similarly, progress has been made in ground truth information comparison and validation models. An example of this progress is the application of information using the Two-Source Surface Energy Balance () model in commercial vineyards by the Grape Remote sensing Atmospheric Profile and Evapotranspiration eXperiment - Project in California. With advances in frequent data collection for larger areas, information processing becomes computationally expensive on local computers. Additionally, fragmentation of different models and tools necessary to process the data and validate the results is a limiting factor. For example, in the referred project, commercial software ( and Excel) and Python and Matlab code are needed to complete the analysis. There is a need to assess and integrate research conducted with and surface energy balance models in a sharing platform to be easily migrated to high performance computing () resources. This research, sponsored by the National Science Foundation Cyber Training Fellowships, is integrating disparate software and code under a unified language (Python). The Python code for estimating the surface energy fluxes using TSEB2T model as well as the EC footprint analysis code for ground truth information comparison were hosted in myGeoHub site https://mygeohub.org/ to be reproducible and replicable.

摘要

小型无人机系统和先进的地表能量平衡模型能够(在植物尺度上)对不同(农业、城市和自然)环境进行详细评估和监测。在大气-植物-土壤相互作用的理解与建模以及植物尺度内部过程的数值量化方面已经取得了显著进展。同样,在地面实况信息比较和验证模型方面也取得了进展。这一进展的一个例子是,加利福尼亚州的葡萄遥感大气剖面与蒸散实验项目在商业葡萄园应用了基于双源地表能量平衡模型的信息。随着大面积频繁数据收集技术的进步,在本地计算机上进行信息处理的计算成本变得很高。此外,处理数据和验证结果所需的不同模型和工具的碎片化是一个限制因素。例如,在上述项目中,需要商业软件(ArcGIS和Excel)以及Python和Matlab代码来完成分析。有必要在一个共享平台上评估和整合使用无人机和地表能量平衡模型进行的研究,以便轻松迁移到高性能计算资源上。这项由美国国家科学基金会网络培训奖学金资助的研究,正在将不同的软件和代码整合到一种统一的语言(Python)之下。使用TSEB2T模型估算地表能量通量的Python代码以及用于地面实况信息比较的涡度相关足迹分析代码托管在myGeoHub网站https://mygeohub.org/上,以便实现可重复性和可复制性。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验