Chao Tzu-Hao H, Zhang Wei-Ting, Hsu Li-Ming, Cerri Domenic H, Wang Tzu-Wen, Shih Yen-Yu I
University of North Carolina at Chapel Hill, Center for Animal MRI, Chapel Hill. North Carolina, United States.
University of North Carolina at Chapel Hill, Biomedical Research Imaging Center, Chapel Hill. North Carolina, United States.
Neurophotonics. 2022 Jul;9(3):032205. doi: 10.1117/1.NPh.9.3.032205. Epub 2022 Jan 5.
Although emerging evidence suggests that the hemodynamic response function (HRF) can vary by brain region and species, a single, canonical, human-based HRF is widely used in animal studies. Therefore, the development of flexible, accessible, brain-region specific HRF calculation approaches is paramount as hemodynamic animal studies become increasingly popular. To establish an fMRI-compatible, spectral, fiber-photometry platform for HRF calculation and validation in any rat brain region. We used our platform to simultaneously measure (a) neuronal activity via genetically encoded calcium indicators (GCaMP6f), (b) local cerebral blood volume (CBV) from intravenous Rhodamine B dye, and (c) whole brain CBV via fMRI with the Feraheme contrast agent. Empirical HRFs were calculated with GCaMP6f and Rhodamine B recordings from rat brain regions during resting-state and task-based paradigms. We calculated empirical HRFs for the rat primary somatosensory, anterior cingulate, prelimbic, retrosplenial, and anterior insular cortical areas. Each HRF was faster and narrower than the canonical HRF and no significant difference was observed between these cortical regions. When used in general linear model analyses of corresponding fMRI data, the empirical HRFs showed better detection performance than the canonical HRF. Our findings demonstrate the viability and utility of fiber-photometry-based HRF calculations. This platform is readily scalable to multiple simultaneous recording sites, and adaptable to study transfer functions between stimulation events, neuronal activity, neurotransmitter release, and hemodynamic responses.
尽管新出现的证据表明,血流动力学响应函数(HRF)可能因脑区和物种而异,但在动物研究中广泛使用的是基于人类的单一标准HRF。因此,随着血流动力学动物研究越来越受欢迎,开发灵活、易用、针对特定脑区的HRF计算方法至关重要。为了建立一个与功能磁共振成像(fMRI)兼容的、用于在任何大鼠脑区计算和验证HRF的光谱纤维光度测量平台。我们使用我们的平台同时测量:(a)通过基因编码钙指示剂(GCaMP6f)测量神经元活动;(b)通过静脉注射罗丹明B染料测量局部脑血容量(CBV);(c)使用Feraheme造影剂通过fMRI测量全脑CBV。在静息状态和基于任务的范式下,根据大鼠脑区的GCaMP6f和罗丹明B记录计算经验性HRF。我们计算了大鼠初级体感、前扣带回、前边缘、压后皮质和前岛叶皮质区域的经验性HRF。每个HRF都比标准HRF更快、更窄,并且在这些皮质区域之间未观察到显著差异。当用于相应fMRI数据的一般线性模型分析时,经验性HRF比标准HRF表现出更好的检测性能。我们的研究结果证明了基于纤维光度测量的HRF计算的可行性和实用性。该平台易于扩展到多个同时记录位点,并适用于研究刺激事件、神经元活动、神经递质释放和血流动力学反应之间的传递函数。