Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, China.
Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
Cell Death Dis. 2022 Jan 10;13(1):29. doi: 10.1038/s41419-021-04478-x.
Methylglyoxal (MGO) is an active metabolite of glucose and plays a prominent role in the pathogenesis of diabetic vascular complications, including endothelial cell apoptosis induced by oxidative stress. Metformin (MET), a widely prescribed antidiabetic agent, appears to reduce excessive reactive oxygen species (ROS) generation and limit cell apoptosis. However, the molecular mechanisms underlying this process are still not fully elucidated. We reported here that MET prevents MGO-induced apoptosis by suppressing oxidative stress in vitro and in vivo. Protein expression and protein phosphorylation were investigated using western blotting, ELISA, and immunohistochemical staining, respectively. Cell viability and apoptosis were assessed by the MTT assay, TUNEL staining, and Annexin V-FITC and propidium iodide double staining. ROS generation and mitochondrial membrane potential (MMP) were measured with fluorescent probes. Our results revealed that MET prevented MGO-induced HUVEC apoptosis, inhibited apoptosis-associated biochemical changes such as loss of MMP, the elevation of the Bax/Bcl-2 ratio, and activation of cleaved caspase-3, and attenuated MGO-induced mitochondrial morphological alterations in a dose-dependent manner. MET pretreatment also significantly suppressed MGO-stimulated ROS production, increased signaling through the ROS-mediated PI3K/Akt and Nrf2/HO-1 pathways, and markedly elevated the levels of its downstream antioxidants. Finally, similar results were obtained in vivo, and we demonstrated that MET prevented MGO-induced oxidative damage, apoptosis, and inflammation. As expected, MET reversed MGO-induced downregulation of Nrf2 and p-Akt. In addition, a PI3K inhibitor (LY-294002) and a Nrf2 inhibitor (ML385) observably attenuated the protective effects of MET on MGO-induced apoptosis and ROS generation by inhibiting the Nrf2/HO-1 pathways, while a ROS scavenger (NAC) and a permeability transition pores inhibitor (CsA) completely reversed these effects. Collectively, these findings broaden our understanding of the mechanism by which MET regulates apoptosis induced by MGO under oxidative stress conditions, with important implications regarding the potential application of MET for the treatment of diabetic vascular complications.
甲基乙二醛 (MGO) 是葡萄糖的一种活性代谢物,在糖尿病血管并发症的发病机制中起重要作用,包括氧化应激诱导的内皮细胞凋亡。二甲双胍 (MET) 是一种广泛应用的抗糖尿病药物,似乎可以减少过多的活性氧 (ROS) 的产生并限制细胞凋亡。然而,这一过程的分子机制仍未完全阐明。我们在这里报告,MET 通过抑制体外和体内的氧化应激来预防 MGO 诱导的细胞凋亡。使用 Western blot、ELISA 和免疫组织化学染色分别研究蛋白质表达和蛋白质磷酸化。通过 MTT 测定、TUNEL 染色、Annexin V-FITC 和碘化丙啶双染色评估细胞活力和细胞凋亡。通过荧光探针测量 ROS 生成和线粒体膜电位 (MMP)。我们的结果表明,MET 可预防 MGO 诱导的 HUVEC 凋亡,抑制与凋亡相关的生化变化,如 MMP 丧失、Bax/Bcl-2 比值升高和 cleaved caspase-3 激活,并呈剂量依赖性减轻 MGO 诱导的线粒体形态改变。MET 预处理还显著抑制 MGO 刺激的 ROS 产生,增加 ROS 介导的 PI3K/Akt 和 Nrf2/HO-1 通路信号传导,并显著提高其下游抗氧化剂的水平。最后,在体内也得到了类似的结果,我们证明 MET 可预防 MGO 诱导的氧化损伤、凋亡和炎症。正如预期的那样,MET 逆转了 MGO 诱导的 Nrf2 和 p-Akt 下调。此外,PI3K 抑制剂 (LY-294002) 和 Nrf2 抑制剂 (ML385) 通过抑制 Nrf2/HO-1 通路显著减弱了 MET 对 MGO 诱导的细胞凋亡和 ROS 生成的保护作用,而 ROS 清除剂 (NAC) 和通透性转换孔抑制剂 (CsA) 则完全逆转了这些作用。总的来说,这些发现拓宽了我们对 MET 在氧化应激条件下调节 MGO 诱导的细胞凋亡的机制的理解,这对于 MET 治疗糖尿病血管并发症的潜在应用具有重要意义。