Vezza Teresa, Díaz-Pozo Pedro, Canet Francisco, de Marañón Aranzazu M, Abad-Jiménez Zaida, García-Gargallo Celia, Roldan Ildefonso, Solá Eva, Bañuls Celia, López-Domènech Sandra, Rocha Milagros, Víctor Víctor M
Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain.
Service of Cardiology, University Hospital Doctor Peset, FISABIO, Valencia, Spain.
World J Mens Health. 2022 Jul;40(3):399-411. doi: 10.5534/wjmh.210146. Epub 2022 Jan 1.
Mitochondrial dynamics, such as fusion and fission, play a critical role in maintaining cellular metabolic homeostasis. The molecular mechanisms underlying these processes include fusion proteins (Mitofusin 1 [MFN1], Mitofusin 2 [MFN2], and optic atrophy 1 [OPA1]) and fission mediators (mitochondrial fission 1 [FIS1] and dynamin-related protein 1 [DRP1]), which interact with each other to ensure mitochondrial quality control. Interestingly, defects in these proteins can lead to the loss of mitochondrial DNA (mtDNA) integrity, impairment of mitochondrial function, a severe alteration of mitochondrial morphology, and eventually cell death. Emerging evidence has revealed a causal relationship between dysregulation of mitochondria dynamics and age-associated type 2 diabetes, a metabolic disease whose rates have reached an alarming epidemic-like level with the majority of cases (59%) recorded in men aged 65 and over. In this sense, fragmentation of mitochondrial networks is often associated with defects in cellular energy production and increased apoptosis, leading, in turn, to excessive reactive oxygen species release, mitochondrial dysfunction, and metabolic alterations, which can ultimately contribute to β-cell dysfunction and insulin resistance. The present review discusses the processes of mitochondrial fusion and fission and their dysfunction in type 2 diabetes, with special attention given to the therapeutic potential of targeting mitochondrial dynamics in this complex metabolic disorder.
线粒体动力学,如融合与分裂,在维持细胞代谢稳态中起着关键作用。这些过程背后的分子机制包括融合蛋白(线粒体融合蛋白1 [MFN1]、线粒体融合蛋白2 [MFN2]和视神经萎缩蛋白1 [OPA1])和分裂介质(线粒体分裂蛋白1 [FIS1]和动力相关蛋白1 [DRP1]),它们相互作用以确保线粒体质量控制。有趣的是,这些蛋白质的缺陷会导致线粒体DNA(mtDNA)完整性丧失、线粒体功能受损、线粒体形态严重改变,最终导致细胞死亡。新出现的证据揭示了线粒体动力学失调与年龄相关的2型糖尿病之间的因果关系,2型糖尿病是一种代谢性疾病,其发病率已达到令人担忧的流行水平,大多数病例(59%)记录在65岁及以上的男性中。从这个意义上说,线粒体网络的碎片化通常与细胞能量产生缺陷和细胞凋亡增加有关,进而导致活性氧过度释放、线粒体功能障碍和代谢改变,最终可能导致β细胞功能障碍和胰岛素抵抗。本综述讨论了线粒体融合和分裂过程及其在2型糖尿病中的功能障碍,并特别关注了针对这种复杂代谢紊乱中线粒体动力学的治疗潜力。