Cao Yuehua, Zhu Youqi, Du Changliang, Yang Xinyu, Xia Tianyu, Ma Xilan, Cao Chuanbao
Research Center of Materials Science, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications Institution, Beijing Institute of Technology, Beijing 100081, China.
Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China.
ACS Nano. 2022 Jan 25;16(1):1578-1588. doi: 10.1021/acsnano.1c10253. Epub 2022 Jan 13.
The conversion-type copper chalcogenide cathode materials hold great promise for realizing the competitive advantages of rechargeable magnesium batteries among next-generation energy storage technologies; yet, they suffer from sluggish kinetics and low redox reversibility due to large Coulombic resistance and ionic polarization of Mg ions. Here we present an anionic Te-substitution strategy to promote the reversible Cu/Cu redox reaction in Te-substituted CuSTe nanosheet cathodes. X-ray absorption fine structure analysis demonstrates that Te dopants occupy the anionic sites of sulfur atoms and result in an improved oxidation state of the Cu species. The kinetically favored CuSTe ( = 0.04) nanosheets deliver a specific capacity of 446 mAh g under a 20 mA g current density and a good long-life cycling stability upon 1500 repeated cycles with a capacity decay rate of 0.0345% per cycle at 1 A g. Furthermore, the CuSTe ( = 0.04) nanosheets can also exhibit an enhanced rate capability with a reversible specific capacity of 100 mAh g even under a high current density of 1 A g. All the obtained electrochemical characteristics of CuSTe nanosheets significantly exceed those of pristine CuS nanosheets, which can contribute to the improved redox reversibility and favorable kinetics of CuSTe nanosheets. Therefore, anionic Te-substitution demonstrates a route for purposeful cathode chemistry regulation in rechargeable magnesium batteries.
转换型铜硫族化合物阴极材料在下一代储能技术中具有实现可充电镁电池竞争优势的巨大潜力;然而,由于镁离子的大库仑电阻和离子极化,它们存在动力学迟缓以及氧化还原可逆性低的问题。在此,我们提出一种阴离子碲取代策略,以促进碲取代的CuSTe纳米片阴极中可逆的Cu/Cu氧化还原反应。X射线吸收精细结构分析表明,碲掺杂剂占据硫原子的阴离子位点,并导致铜物种的氧化态得到改善。动力学有利的CuSTe(= 0.04)纳米片在20 mA g电流密度下具有446 mAh g的比容量,并且在1 A g下经过1500次循环后具有良好的长寿命循环稳定性,容量衰减率为每循环0.0345%。此外,即使在1 A g的高电流密度下,CuSTe(= 0.04)纳米片也能表现出增强的倍率性能,可逆比容量为100 mAh g。CuSTe纳米片获得的所有电化学特性均显著超过原始CuS纳米片,这有助于改善CuSTe纳米片的氧化还原可逆性和有利的动力学。因此,阴离子碲取代展示了一种在可充电镁电池中有目的地调节阴极化学的途径。