Suppr超能文献

基于壳聚糖的机械性能良好的生物黏附剂,用于肌腱-骨修复。

Mechanically Competent Chitosan-Based Bioadhesive for Tendon-to-Bone Repair.

机构信息

Department of Orthopedic Surgery, Columbia University, New York, NY, 10032, USA.

ACatechol, Inc., Santa Barbara, CA, 93103, USA.

出版信息

Adv Healthc Mater. 2022 May;11(10):e2102344. doi: 10.1002/adhm.202102344. Epub 2022 Jan 22.

Abstract

Current suture-based surgical techniques used to repair torn rotator cuff tendons do not result in mechanically competent tendon-to-bone attachments, leading to high postoperative failure rates. Although adhesives have been proposed to protect against sutures tearing through tendon during healing, no currently available adhesive meets the clinical needs of adhesive strength, biocompatibility, and promotion of healing. Here, a biocompatible, graded, 3,4-dihydroxy phenyl chitosan (BGC) bioadhesive designed to meet these needs is presented. Although 3,4-dihydroxy phenyl chitosan (DP-chitosan) bioadhesives are biocompatible, their adhesion strength is low; soluble oxidants or cross-linking agents can be added for higher bonding strength, but this sacrifices biocompatibility. These challenges are overcome by developing a periodate-modified ion exchange resin-bead filtration system that oxidizes catechol moieties to quinones and filters off the activating agent and resin. The resulting BGC bioadhesive exhibited sixfold higher strength compared to commercially available tissue adhesives, with strength in the range necessary to improve tendon-to-bone repair (≈1MPa, ≈20% of current suture repair strength). The bioadhesive is biocompatible and promoted tenogenesis; cells exposed to the bioadhesive demonstrated enhanced expression of collagen I and the tenogenic marker Scx. Results demonstrated that the bioadhesive has the potential to improve the strength of a tendon-to-bone repair and promote healing.

摘要

目前用于修复撕裂的肩袖肌腱的缝线式外科技术不能使肌腱与骨之间形成机械有效的附着,导致术后高失败率。虽然已经提出了使用粘合剂来防止在愈合过程中缝线撕裂肌腱,但目前没有可用的粘合剂能够满足粘合强度、生物相容性和促进愈合的临床需求。在这里,提出了一种生物相容性的、分级的、3,4-二羟基苯基壳聚糖(BGC)生物粘合剂,旨在满足这些需求。尽管 3,4-二羟基苯基壳聚糖(DP-壳聚糖)生物粘合剂具有生物相容性,但它们的粘合强度较低;可以添加可溶性氧化剂或交联剂以获得更高的粘合强度,但这会牺牲生物相容性。通过开发一种高碘酸盐修饰的离子交换树脂珠过滤系统克服了这些挑战,该系统将儿茶酚部分氧化为醌,并过滤掉激活剂和树脂。与市售的组织粘合剂相比,所得 BGC 生物粘合剂的强度提高了六倍,其强度范围足以改善肌腱与骨的修复(≈1MPa,约为现有缝线修复强度的 20%)。该生物粘合剂具有生物相容性并促进成腱;暴露于生物粘合剂的细胞表现出胶原 I 和腱形成标志物 Scx 的表达增强。结果表明,该生物粘合剂有可能提高肌腱与骨修复的强度并促进愈合。

相似文献

1
Mechanically Competent Chitosan-Based Bioadhesive for Tendon-to-Bone Repair.
Adv Healthc Mater. 2022 May;11(10):e2102344. doi: 10.1002/adhm.202102344. Epub 2022 Jan 22.
2
Tendon Collagen Crosslinking Offers Potential to Improve Suture Pullout in Rotator Cuff Repair: An Ex Vivo Sheep Study.
Clin Orthop Relat Res. 2016 Aug;474(8):1778-85. doi: 10.1007/s11999-016-4838-8. Epub 2016 Apr 18.
3
Enhanced tendon-to-bone repair through adhesive films.
Acta Biomater. 2018 Apr 1;70:165-176. doi: 10.1016/j.actbio.2018.01.032. Epub 2018 Feb 8.
4
Medial versus lateral supraspinatus tendon properties: implications for double-row rotator cuff repair.
Am J Sports Med. 2010 Dec;38(12):2456-63. doi: 10.1177/0363546510376817. Epub 2010 Oct 7.
5
Possibilities and limitations of electrospun chitosan-coated polycaprolactone grafts for rotator cuff tear repair.
J Tissue Eng Regen Med. 2020 Jan;14(1):186-197. doi: 10.1002/term.2985. Epub 2019 Nov 10.
6
[Study on injectable chitosan hydrogel with tendon-derived stem cells for enhancing rotator cuff tendon-to-bone healing].
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2024 Jan 15;38(1):91-98. doi: 10.7507/1002-1892.202309014.
7
Two Techniques for Treating Medium-Sized Supraspinatus Tears: The Medially Based Single-Row Technique and the Suture Bridge Technique.
JBJS Essent Surg Tech. 2021 Jun 8;11(2). doi: 10.2106/JBJS.ST.20.00004. eCollection 2021 Apr-Jun.
9
Into-Tunnel Repair Versus Onto-Surface Repair for Rotator Cuff Tears in a Rabbit Model.
Am J Sports Med. 2018 Jun;46(7):1711-1719. doi: 10.1177/0363546518764685. Epub 2018 Apr 5.

引用本文的文献

1
Advances and challenges in biomaterials for tendon and enthesis repair.
Bioact Mater. 2025 Feb 20;47:531-545. doi: 10.1016/j.bioactmat.2025.01.001. eCollection 2025 May.
3
Effects of tendon viscoelasticity on the distribution of forces across sutures in a model tendon-to-bone repair.
Int J Solids Struct. 2022 Aug 15;250. doi: 10.1016/j.ijsolstr.2022.111725. Epub 2022 May 25.
4
Functional biomaterials for tendon/ligament repair and regeneration.
Regen Biomater. 2022 Sep 5;9:rbac062. doi: 10.1093/rb/rbac062. eCollection 2022.

本文引用的文献

1
Rapid and coagulation-independent haemostatic sealing by a paste inspired by barnacle glue.
Nat Biomed Eng. 2021 Oct;5(10):1131-1142. doi: 10.1038/s41551-021-00769-y. Epub 2021 Aug 9.
2
The role of loading in murine models of rotator cuff disease.
J Orthop Res. 2022 Apr;40(4):977-986. doi: 10.1002/jor.25113. Epub 2021 Jun 13.
3
Nanopillared Chitosan/Gelatin Films: A Biomimetic Approach for Improved Osteogenesis.
ACS Biomater Sci Eng. 2019 Sep 9;5(9):4311-4322. doi: 10.1021/acsbiomaterials.9b00426. Epub 2019 Aug 22.
4
Primary cilia as the nexus of biophysical and hedgehog signaling at the tendon enthesis.
Sci Adv. 2020 Oct 30;6(44). doi: 10.1126/sciadv.abc1799. Print 2020 Oct.
5
Bioadhesives for musculoskeletal tissue regeneration.
Acta Biomater. 2020 Nov;117:77-92. doi: 10.1016/j.actbio.2020.09.050. Epub 2020 Oct 6.
10
Application of Chitosan in Bone and Dental Engineering.
Molecules. 2019 Aug 19;24(16):3009. doi: 10.3390/molecules24163009.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验