Macromolecular Science and Engineering Program, University of Michigan Ann Arbor, NCRC Building 28, 2800 Plymouth Rd., Ann Arbor, MI, 48109, USA.
Department of Chemical Engineering, University of Michigan Ann Arbor, NCRC 28, 2800 Plymouth Rd., Ann Arbor, MI, 48109, USA.
Adv Healthc Mater. 2022 Apr;11(8):e2101536. doi: 10.1002/adhm.202101536. Epub 2022 Jan 27.
Numerous human disorders can benefit from targeted, intravenous (IV) drug delivery. Polymeric nanoparticles have been designed to undergo systemic circulation and deliver their therapeutic cargo to target sites in a controlled manner. Poly(lactic-co-glycolic) acid (PLGA) is a particularly promising biomaterial for designing intravenous drug carriers due to its biocompatibility, biodegradability, and history of clinical success across other routes of administration. Despite these merits, PLGA remains markedly absent in clinically approved IV drug delivery formulations. A prominent factor in PLGA particles' inability to succeed intravenously may lie in the hydrophobic character of the polyester, leading to the adsorption of serum proteins (i.e., opsonization) and a cascade of events that end in their premature clearance from the bloodstream. PEGylation, or surface-attached polyethylene glycol chains, is a common strategy for shielding particles from opsonization. Polyethylene glycol (PEG) continues to be regarded as the ultimate "stealth" solution despite the lack of clinical progress of PEGylated PLGA carriers. This review reflects on some of the reasons for the clinical failure of PLGA, particularly the drawbacks of PEGylation, and highlights alternative surface coatings on PLGA particles. Ultimately, a new approach will be needed to harness the potential of PLGA nanoparticles and allow their widespread clinical adoption.
许多人类疾病都可以从靶向、静脉(IV)药物输送中受益。聚合物纳米颗粒被设计为进行全身循环,并以受控的方式将其治疗货物递送到靶部位。聚(乳酸-共-乙醇酸)(PLGA)是一种特别有前途的生物材料,可用于设计静脉内药物载体,因为它具有生物相容性、可生物降解性以及在其他给药途径中临床成功的历史。尽管具有这些优点,但 PLGA 在临床上批准的 IV 药物输送制剂中仍然明显缺失。PLGA 颗粒无法成功进行静脉内给药的一个突出因素可能在于聚酯的疏水性,导致血清蛋白的吸附(即调理作用)以及一系列最终导致其从血液中过早清除的事件。聚乙二醇(PEG)化或表面附着的聚乙二醇链是一种常见的策略,用于保护颗粒免受调理作用。尽管 PEG 化 PLGA 载体的临床进展缺乏,但 PEG 仍被认为是最终的“隐形”解决方案。本综述反思了 PLGA 临床失败的一些原因,特别是 PEG 化的缺点,并强调了 PLGA 颗粒的替代表面涂层。最终,需要一种新的方法来利用 PLGA 纳米颗粒的潜力,并允许它们广泛的临床应用。