Suppr超能文献

基于脑磁共振成像和临床数据训练的深度学习算法,用于预测放射冠梗死患者的运动结局。

Deep Learning Algorithm Trained on Brain Magnetic Resonance Images and Clinical Data to Predict Motor Outcomes of Patients With Corona Radiata Infarct.

作者信息

Kim Jeoung Kun, Chang Min Cheol, Park Donghwi

机构信息

Department of Business Administration, School of Business, Yeungnam University, Gyeongsan, South Korea.

Department of Rehabilitation Medicine, College of Medicine, Yeungnam University, Gyeongsan, South Korea.

出版信息

Front Neurosci. 2022 Jan 3;15:795553. doi: 10.3389/fnins.2021.795553. eCollection 2021.

Abstract

The early and accurate prediction of the extent of long-term motor recovery is important for establishing specific rehabilitation strategies for stroke patients. Using clinical parameters and brain magnetic resonance images as inputs, we developed a deep learning algorithm to increase the prediction accuracy of long-term motor outcomes in patients with corona radiata (CR) infarct. Using brain magnetic resonance images and clinical data obtained soon after CR infarct, we developed an integrated algorithm to predict hand function and ambulatory outcomes of the patient 6 months after onset. To develop and evaluate the algorithm, we retrospectively recruited 221 patients with CR infarct. The area under the curve of the validation set of the integrated modified Brunnstrom classification prediction model was 0.891 with 95% confidence interval (0.814-0.967) and that of the integrated functional ambulatory category prediction model was 0.919, with 95% confidence interval (0.842-0.995). We demonstrated that an integrated algorithm trained using patients' clinical data and brain magnetic resonance images obtained soon after CR infarct can promote the accurate prediction of long-term hand function and ambulatory outcomes. Future efforts will be devoted to finding more appropriate input variables to further increase the accuracy of deep learning models in clinical applications.

摘要

早期准确预测长期运动恢复程度对于为中风患者制定具体的康复策略至关重要。我们以临床参数和脑磁共振图像作为输入,开发了一种深度学习算法,以提高辐射冠(CR)梗死患者长期运动结果的预测准确性。利用CR梗死发生后不久获得的脑磁共振图像和临床数据,我们开发了一种综合算法,以预测患者发病6个月后的手部功能和步行结果。为了开发和评估该算法,我们回顾性招募了221例CR梗死患者。综合改良Brunnstrom分类预测模型验证集的曲线下面积为0.891,95%置信区间为(0.814 - 0.967),综合功能性步行分类预测模型的曲线下面积为0.919,95%置信区间为(0.842 - 0.995)。我们证明,使用CR梗死发生后不久获得的患者临床数据和脑磁共振图像训练的综合算法可以促进对长期手部功能和步行结果的准确预测。未来的工作将致力于寻找更合适的输入变量,以进一步提高深度学习模型在临床应用中的准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验