Ji Xiangmin, Cui Guimei, Xu Chengzhen, Hou Jie, Zhang Yunfei, Ren Yan
School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, China.
School of Computer Science and Technology, Huaibei Normal University, Huaibei, China.
Front Pharmacol. 2022 Jan 3;12:773135. doi: 10.3389/fphar.2021.773135. eCollection 2021.
Improving adverse drug event (ADE) detection is important for post-marketing drug safety surveillance. Existing statistical approaches can be further optimized owing to their high efficiency and low cost. The objective of this study was to evaluate the proposed approach for use in pharmacovigilance, the early detection of potential ADEs, and the improvement of drug safety. We developed a novel integrated approach, the Bayesian signal detection algorithm, based on the pharmacological network model (IC) using the FDA Adverse Event Reporting System (FAERS) data published from 2004 to 2009 and from 2014 to 2019Q2, PubChem, and DrugBank database. First, we used a pharmacological network model to generate the probabilities for drug-ADE associations, which comprised the proper prior information component (IC). We then defined the probability of the propensity score adjustment based on a logistic regression model to control for the confounding bias. Finally, we chose the Side Effect Resource (SIDER) and the Observational Medical Outcomes Partnership (OMOP) data to evaluate the detection performance and robustness of the IC compared with the statistical approaches [disproportionality analysis (DPA)] by using the area under the receiver operator characteristics curve (AUC) and Youden's index. Of the statistical approaches implemented, the IC showed the best performance (AUC, 0.8291; Youden's index, 0.5836). Meanwhile, the AUCs of the IC, EBGM, ROR, and PRR were 0.7343, 0.7231, 0.6828, and 0.6721, respectively. The proposed IC combined the strengths of the pharmacological network model and the Bayesian signal detection algorithm and performed better in detecting true drug-ADE associations. It also detected newer ADE signals than a DPA and may be complementary to the existing statistical approaches.
改善药物不良事件(ADE)检测对于上市后药物安全监测至关重要。现有统计方法因其高效性和低成本而可进一步优化。本研究的目的是评估所提出的方法在药物警戒、潜在ADE的早期检测以及药物安全性改善方面的应用。我们基于药理网络模型(IC),利用2004年至2009年以及2014年至2019年第二季度发布的美国食品药品监督管理局(FDA)不良事件报告系统(FAERS)数据、PubChem和DrugBank数据库,开发了一种新颖的综合方法——贝叶斯信号检测算法。首先,我们使用药理网络模型生成药物 - ADE关联的概率,其中包括适当的先验信息成分(IC)。然后,我们基于逻辑回归模型定义倾向得分调整的概率,以控制混杂偏倚。最后,我们选择副作用资源(SIDER)和观察性医疗结果合作组织(OMOP)的数据,通过使用受试者操作特征曲线(AUC)下的面积和尤登指数,评估IC与统计方法[不成比例分析(DPA)]相比的检测性能和稳健性。在所实施的统计方法中,IC表现最佳(AUC为0.8291;尤登指数为0.5836)。同时,IC、EBGM、ROR和PRR的AUC分别为0.7343、0.7231、0.6828和0.6721。所提出的IC结合了药理网络模型和贝叶斯信号检测算法的优势,在检测真实的药物 - ADE关联方面表现更好。它还比DPA检测到更新的ADE信号,并且可能是现有统计方法的补充。