Thio Si Kuan, Park Sung-Yong
Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore.
Department of Mechanical Engineering, San Diego State University, San Diego, CA 92182-1323, USA.
Micromachines (Basel). 2022 Jan 11;13(1):112. doi: 10.3390/mi13010112.
We present a plasmonic-enhanced dielectrophoretic (DEP) phenomenon to improve optical DEP performance of a floating electrode optoelectronic tweezers (FEOET) device, where aqueous droplets can be effectively manipulated on a light-patterned photoconductive surface immersed in an oil medium. To offer device simplicity and cost-effectiveness, recent studies have utilized a polymer-based photoconductive material such as titanium oxide phthalocyanine (TiOPc). However, the TiOPc has much poorer photoconductivity than that of semiconductors like amorphous silicon (a-Si), significantly limiting optical DEP applications. The study herein focuses on the FEOET device for which optical DEP performance can be greatly enhanced by utilizing plasmonic nanoparticles as light scattering elements to improve light absorption of the low-quality TiOPc. Numerical simulation studies of both plasmonic light scattering and electric field enhancement were conducted to verify wide-angle scattering light rays and an approximately twofold increase in electric field gradient with the presence of nanoparticles. Similarly, a spectrophotometric study conducted on the absorption spectrum of the TiOPc has shown light absorption improvement (nearly twofold) of the TiOPc layer. Additionally, droplet dynamics study experimentally demonstrated a light-actuated droplet speed of 1.90 mm/s, a more than 11-fold improvement due to plasmonic light scattering. This plasmonic-enhanced FEOET technology can considerably improve optical DEP capability even with poor-quality photoconductive materials, thus providing low-cost, easy-fabrication solutions for various droplet-based microfluidic applications.
我们提出了一种等离子体增强介电泳(DEP)现象,以改善浮动电极光电镊子(FEOET)装置的光学DEP性能,在该装置中,水滴可以在浸没于油介质中的光图案化光电导表面上得到有效操控。为了使装置简单且具有成本效益,最近的研究采用了基于聚合物的光电导材料,如酞菁钛(TiOPc)。然而,TiOPc的光电导率比非晶硅(a-Si)等半导体的光电导率差得多,这严重限制了光学DEP的应用。本文的研究重点是FEOET装置,通过利用等离子体纳米颗粒作为光散射元件来改善低质量TiOPc的光吸收,可大大提高其光学DEP性能。进行了等离子体光散射和电场增强的数值模拟研究,以验证存在纳米颗粒时的广角散射光线以及电场梯度大约增加两倍。同样,对TiOPc吸收光谱进行的分光光度研究表明,TiOPc层的光吸收有所改善(近两倍)。此外,液滴动力学研究通过实验证明了光驱动液滴速度为1.90 mm/s,由于等离子体光散射提高了11倍多。这种等离子体增强的FEOET技术即使使用低质量的光电导材料也能显著提高光学DEP能力,从而为各种基于液滴的微流体应用提供低成本、易于制造的解决方案。