Ligwood LLC, Madison, WI 53719-2380, USA.
Forest Products Laboratory, One Gifford Pinchot Drive, Madison, WI 53726-2398, USA.
Molecules. 2022 Jan 14;27(2):503. doi: 10.3390/molecules27020503.
Nickel (Ni)-lignin nanocomposites were synthesized from nickel nitrate and kraft lignin then catalytically graphitized to few-layer graphene-encapsulated nickel nanoparticles (Ni@G). Ni@G nanoparticles were used for catalytic decomposition of methane (CDM) to produce COx-free hydrogen and graphene nanoplatelets. Ni@G showed high catalytic activity for methane decomposition at temperatures of 800 to 900 °C and exhibited long-term stability of 600 min time-on-stream (TOS) without apparent deactivation. The catalytic stability may be attributed to the nickel dispersion in the Ni@G sample. During the CDM reaction process, graphene shells over Ni@G nanoparticles were cracked and peeled off the nickel cores at high temperature. Both the exposed nickel nanoparticles and the cracked graphene shells may participate the CDM reaction, making Ni@G samples highly active for CDM reaction. The vacancy defects and edges in the cracked graphene shells serve as the active sites for methane decomposition. The edges are continuously regenerated by methane molecules through CDM reaction.
镍(Ni)-木质素纳米复合材料是由硝酸镍和 kraft 木质素合成的,然后进行催化石墨化,得到了少层石墨烯包裹的镍纳米颗粒(Ni@G)。Ni@G 纳米颗粒用于甲烷(CDM)的催化分解,以生产无 COx 的氢气和石墨烯纳米片。Ni@G 在 800 至 900°C 的温度下表现出对甲烷分解的高催化活性,并在 600 min 的时间内表现出长期稳定性,没有明显的失活。催化稳定性可能归因于 Ni@G 样品中的镍分散性。在 CDM 反应过程中,石墨烯壳在高温下从 Ni@G 纳米颗粒上破裂并剥落镍核。暴露的镍纳米颗粒和破裂的石墨烯壳都可能参与 CDM 反应,使 Ni@G 样品对 CDM 反应具有高活性。破裂的石墨烯壳中的空位缺陷和边缘作为甲烷分解的活性位点。边缘通过 CDM 反应不断地被甲烷分子再生。