Ozawa Tomoki, Murata Masayuki, Suemasu Takashi, Toko Kaoru
Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8573, Japan.
Research Institute for Energy Conservation, AIST, Tsukuba 305-8569, Japan.
Materials (Basel). 2022 Jan 14;15(2):608. doi: 10.3390/ma15020608.
Flexible and reliable thermoelectric generators (TEGs) will be essential for future energy harvesting sensors. In this study, we synthesized p- and n-type SiGe layers on a high heat-resistant polyimide film using metal-induced layer exchange (LE) and demonstrated TEG operation. Despite the low process temperature (<500 °C), the polycrystalline SiGe layers showed high power factors of 560 µW m K for p-type SiGe and 390 µW m K for n-type SiGe, owing to self-organized doping in LE. Furthermore, the power factors indicated stable behavior with changing measurement temperature, an advantage of SiGe as an inorganic material. An in-plane π-type TEG based on these SiGe layers showed an output power of 0.45 µW cm at near room temperature for a 30 K temperature gradient. This achievement will enable the development of environmentally friendly and highly reliable flexible TEGs for operating micro-energy devices in the future Internet of Things.
灵活且可靠的热电发电机(TEG)对于未来的能量收集传感器至关重要。在本研究中,我们使用金属诱导层交换(LE)在高耐热聚酰亚胺薄膜上合成了p型和n型SiGe层,并展示了TEG的运行。尽管工艺温度较低(<500°C),但由于LE中的自组织掺杂,多晶SiGe层的p型SiGe和n型SiGe的功率因数分别高达560 μW m K和390 μW m K。此外,功率因数随测量温度变化表现出稳定的行为,这是SiGe作为无机材料的一个优势。基于这些SiGe层的面内π型TEG在30 K温度梯度下于接近室温时的输出功率为0.45 μW cm 。这一成果将有助于开发环保且高度可靠的柔性TEG,用于在未来物联网中运行微能量设备。