Suppr超能文献

严重孕产妇发病的社会环境模式的探索性时空分析

An Exploratory Spatiotemporal Analysis of Socio-Environmental Patterns in Severe Maternal Morbidity.

作者信息

Harden Stella R, Runkle Jennifer D, Sugg Margaret M

机构信息

Department of Geography and Planning, Appalachian State University, P.O. Box 32066, Boone, NC, 28608, USA.

North Carolina Institute for Climate Studies, North Carolina State University, Asheville, NC, USA.

出版信息

Matern Child Health J. 2022 May;26(5):1077-1086. doi: 10.1007/s10995-021-03330-0. Epub 2022 Jan 21.

Abstract

OBJECTIVES

Severe Maternal Morbidity (SMM) is a group of pregnancy complications in which a woman nearly dies. Despite its increasing prevalence, little research has evaluated geographic patterns of SMM and the underlying social determinants that influence excess risk. This study examined the spatial clustering of SMM across South Carolina, US, and its associations with place-based social and environmental factors.

METHODS

Hospitalized deliveries from 2012 to 2017 were analyzed using Kulldorff's spatial scan statistic to locate areas with abnormally high rates of SMM. SMM patients inside and outside risk clusters were compared using Generalized Estimating Equations (GEE) to determine underlying individual and community-level risk factors.

RESULTS

GEE models revealed that the odds of living in a high-risk SMM21 (SMM including blood transfusions) cluster was 2.49 times higher among Black patients (p < .001) compared to those outside of a high-risk cluster. Women residing in a high-risk SMM20 (SMM excluding blood transfusions) cluster were 1.38 times more likely to experience the most number of extremely hot days and 1.70 times more likely to present with obesity than women in a low-risk SMM cluster (p < .001).

CONCLUSIONS

This study is the first to characterize the geographic clustering of SMM risk in the US. Our geospatial approach contributes a novel understanding to factors which influence SMM beyond patient-level characteristics and identifies the impact of hot ambient temperature on maternal morbidity. Findings address an important literature gap surrounding place-based risk factors by explaining the contextual social and built environmental factors that drive SMM risk.

摘要

目的

严重孕产妇发病(SMM)是一组妊娠并发症,在此期间女性几乎死亡。尽管其患病率不断上升,但很少有研究评估SMM的地理模式以及影响额外风险的潜在社会决定因素。本研究调查了美国南卡罗来纳州SMM的空间聚集情况及其与基于地点的社会和环境因素的关联。

方法

使用Kulldorff空间扫描统计量分析2012年至2017年的住院分娩情况,以确定SMM发生率异常高的地区。使用广义估计方程(GEE)比较风险聚集区内和区外的SMM患者,以确定潜在的个体和社区层面的风险因素。

结果

GEE模型显示,与高风险聚集区外的患者相比,黑人患者生活在高风险SMM21(包括输血的SMM)聚集区的几率高出2.49倍(p < 0.001)。与低风险SMM聚集区的女性相比,居住在高风险SMM20(不包括输血的SMM)聚集区的女性经历极热天数最多的可能性高1.38倍,肥胖的可能性高1.70倍(p < 0.001)。

结论

本研究首次描述了美国SMM风险的地理聚集情况。我们的地理空间方法有助于对影响SMM的因素有新的理解,这些因素超出了患者层面的特征,并确定了炎热环境温度对孕产妇发病的影响。研究结果通过解释驱动SMM风险的背景社会和建筑环境因素,填补了围绕基于地点的风险因素的重要文献空白。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验