Suppr超能文献

基于双任务一致联合学习和任务级正则化的半监督3D医学图像分割

Semi-Supervised 3D Medical Image Segmentation Based on Dual-Task Consistent Joint Learning and Task-Level Regularization.

作者信息

Chen Qi-Qi, Sun Zhao-Hui, Wei Chuan-Feng, Wu Edmond Q, Ming Dong

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2023 Jul-Aug;20(4):2457-2467. doi: 10.1109/TCBB.2022.3144428. Epub 2023 Aug 9.

Abstract

Semi-supervised learning has attracted wide attention from many researchers since its ability to utilize a few data with labels and relatively more data without labels to learn information. Some existing semi-supervised methods for medical image segmentation enforce the regularization of training by implicitly perturbing data or networks to perform the consistency. Most consistency regularization methods focus on data level or network structure level, and rarely of them focus on the task level. It may not directly lead to an improvement in task accuracy. To overcome the problem, this work proposes a semi-supervised dual-task consistent joint learning framework with task-level regularization for 3D medical image segmentation. Two branches are utilized to simultaneously predict the segmented and signed distance maps, and they can learn useful information from each other by constructing a consistency loss function between the two tasks. The segmentation branch learns rich information from both labeled and unlabeled data to strengthen the constraints on the geometric structure of the target. Experimental results on two benchmark datasets show that the proposed method can achieve better performance compared with other state-of-the-art works. It illustrates our method improves segmentation performance by utilizing unlabeled data and consistent regularization.

摘要

半监督学习因其能够利用少量带标签数据和相对较多的无标签数据来学习信息,而受到众多研究者的广泛关注。一些现有的用于医学图像分割的半监督方法通过隐式扰动数据或网络来执行一致性,从而加强训练的正则化。大多数一致性正则化方法集中在数据级别或网络结构级别,很少关注任务级别。这可能不会直接导致任务准确性的提高。为了克服这个问题,这项工作提出了一种用于3D医学图像分割的具有任务级正则化的半监督双任务一致联合学习框架。利用两个分支同时预测分割图和符号距离图,并且它们可以通过在两个任务之间构建一致性损失函数来相互学习有用信息。分割分支从有标签和无标签数据中学习丰富信息,以加强对目标几何结构的约束。在两个基准数据集上的实验结果表明,与其他现有先进方法相比,所提出的方法可以实现更好的性能。这表明我们的方法通过利用无标签数据和一致正则化提高了分割性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验