Suppr超能文献

使用卷积神经网络对巨大的单层囊泡进行智能荧光图像分析。

Intelligent fluorescence image analysis of giant unilamellar vesicles using convolutional neural network.

机构信息

Department of Chemistry and Biochemistry, Montclair State University, Montclair, NJ, 07043, USA.

Department of Computer Science, Montclair State University, Montclair, NJ, 07043, USA.

出版信息

BMC Bioinformatics. 2022 Jan 21;23(1):48. doi: 10.1186/s12859-022-04577-2.

Abstract

BACKGROUND

Fluorescence image analysis in biochemical science often involves the complex tasks of identifying samples for analysis and calculating the desired information from the intensity traces. Analyzing giant unilamellar vesicles (GUVs) is one of these tasks. Researchers need to identify many vesicles to statistically analyze the degree of molecular interaction or state of molecular organization on the membranes. This analysis is complicated, requiring a careful manual examination by researchers, so automating the analysis can significantly aid in improving its efficiency and reliability.

RESULTS

We developed a convolutional neural network (CNN) assisted intelligent analysis routine based on the whole 3D z-stack images. The programs identify the vesicles with desired morphology and analyzes the data automatically. The programs can perform protein binding analysis on the membranes or state decision analysis of domain phase separation. We also show that the method can easily be applied to similar problems, such as intensity analysis of phase-separated protein droplets. CNN-based classification approach enables the identification of vesicles even from relatively complex samples. We demonstrate that the proposed artificial intelligence-assisted classification can further enhance the accuracy of the analysis close to the performance of manual examination in vesicle selection and vesicle state determination analysis.

CONCLUSIONS

We developed a MATLAB based software capable of efficiently analyzing confocal fluorescence image data of giant unilamellar vesicles. The program can automatically identify GUVs with desired morphology and perform intensity-based calculation and state decision for each vesicle. We expect our method of CNN implementation can be expanded and applied to many similar problems in image data analysis.

摘要

背景

生物化学领域的荧光图像分析常常涉及到识别待分析样本和从强度轨迹中计算所需信息等复杂任务。分析巨大单层囊泡(GUVs)就是其中一项任务。研究人员需要识别多个囊泡,以便对分子相互作用程度或膜上分子组织状态进行统计分析。这种分析很复杂,需要研究人员进行仔细的手动检查,因此自动化分析可以显著提高其效率和可靠性。

结果

我们开发了一种基于整个 3D z 栈图像的卷积神经网络(CNN)辅助智能分析例程。该程序可以识别具有所需形态的囊泡,并自动分析数据。该程序可以对膜上的蛋白质结合进行分析,或对域相分离的状态进行决策分析。我们还表明,该方法可以轻松应用于类似的问题,如相分离蛋白质液滴的强度分析。基于 CNN 的分类方法可以实现即使在相对复杂的样本中也能识别囊泡。我们证明,所提出的人工智能辅助分类可以进一步提高分析的准确性,使其接近手动检查在囊泡选择和囊泡状态确定分析中的性能。

结论

我们开发了一个基于 MATLAB 的软件,能够高效地分析巨大单层囊泡的共聚焦荧光图像数据。该程序可以自动识别具有所需形态的 GUVs,并对每个囊泡进行基于强度的计算和状态决策。我们期望我们的 CNN 实现方法可以扩展并应用于图像数据分析中的许多类似问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验