Suppr超能文献

抗中性粒细胞胞浆抗体相关肾小球肾炎患者中抗中性粒细胞胞浆抗体肾脏风险评分预测肾脏结局的Meta分析准确性

Meta-Analytical Accuracy of ANCA Renal Risk Score for Prediction of Renal Outcome in Patients With ANCA-Associated Glomerulonephritis.

作者信息

Xia Mengdi, Yu Ruiran, Zheng Zaiqiong, Li Huan, Feng Jie, Xie Xisheng, Chen Dongming

机构信息

Nanchong Key Laboratory of Basic Science and Clinical Research on Chronic Kidney Disease, Department of Nephrology, The Second Clinical Medical Institution of North Sichuan Medical College (Nanchong Central Hospital), Nanchong, China.

Department of Oncology, Anqing First People's Hospital of Anhui Medical University, Anqing, China.

出版信息

Front Med (Lausanne). 2022 Jan 6;8:736754. doi: 10.3389/fmed.2021.736754. eCollection 2021.

Abstract

To evaluate the diagnostic accuracy of antineutrophil cytoplasmic antibody (ANCA) renal risk score (ARRS) for prediction of renal outcome in patients with ANCA-associated glomerulonephritis (ANCA-GN). We searched PubMed, EMBASE, Ovid, Web of Science, the Cochrane Library, and ClinicalTrials.gov for studies, which used ARRS to predict end-stage renal disease (ESRD) in patients with ANCA-GN. Two reviewers independently screened articles for inclusion, assessed the quality of studies with both an adapted Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) tool. We calculated the combined patients with ESRD in the ARRS categories and presented the summary and individual estimates based on the ARRS categories. Then, the sensitivity, specificity, diagnostic odds ratio (DOR), positive/negative likelihood ratio, and the area under the receiver operating characteristic (AUROC) curves of the pooled data for ARRS were used to assess the accuracy of the "above the low-risk threshold" (ARRS ≥ 2) and "high-risk grade" (ARRS ≥ 8) for renal outcome of patients with ANCA-GN. The hierarchical summary ROC (HSROC) was used to verify the accuracy value. The clinical utility of ARRS was evaluated by the Fagan plot. Heterogeneity was explored using meta-regression and subgroup analysis. A total of 12 distinct cohorts from 11 articles involving 1,568 patients with ANCA-GN were analyzed. The cumulative patients with ESRD at the maximum follow-up of 60 months was 5% (95% CI: 0.02-0.07; < 0.001) for ANCA-GN with low ARRS (0-1 points) and significantly increased to 22% (95% CI: 0.15-0.29; < 0.001) medium ARRS (2-7 points). The combined cumulative patients with ESRD was 59% (95% CI: 0.49-0.69; < 0.001) high ARRS (8-11 points). The pooled sensitivity of ARRS ≥ 2 in predicting ESRD was 98% with a specificity of 30% and a DOR of 15.08 and the mean AUROC value was 0.82. The pooled sensitivity of ARRS ≥ 8 in predicting ESRD was 58% with a specificity of 86% and a DOR of 7.59. The meta-regression and subgroup analysis indicated that variation in the geographic regions, study design, index risk, follow-up time, age of patient, publication year, and number of patient could be the potential sources of heterogeneity in the diagnosis of ARRS ≥ 8. This meta-analysis emphasized the good performance of the ARRS score in predicting the renal outcome in patients with ANCA-GN. However, these findings should be verified by future large-scale prospective studies.

摘要

评估抗中性粒细胞胞浆抗体(ANCA)肾风险评分(ARRS)预测ANCA相关性肾小球肾炎(ANCA-GN)患者肾脏结局的诊断准确性。我们检索了PubMed、EMBASE、Ovid、Web of Science、Cochrane图书馆和ClinicalTrials.gov,查找使用ARRS预测ANCA-GN患者终末期肾病(ESRD)的研究。两名审阅者独立筛选纳入文章,并用改良的诊断准确性研究质量评估工具2(QUADAS-2)评估研究质量。我们计算了ARRS各分类中合并的ESRD患者,并根据ARRS分类给出汇总和个体估计值。然后,使用ARRS汇总数据的敏感性、特异性、诊断比值比(DOR)、阳性/阴性似然比以及受试者工作特征曲线下面积(AUROC),评估“高于低风险阈值”(ARRS≥2)和“高风险等级”(ARRS≥8)对ANCA-GN患者肾脏结局的准确性。使用分层汇总ROC(HSROC)验证准确性值。通过Fagan图评估ARRS的临床实用性。使用meta回归和亚组分析探索异质性。共分析了11篇文章中的12个不同队列,涉及1568例ANCA-GN患者。ARRS低(0-1分)的ANCA-GN患者在最长60个月随访时ESRD累积发生率为5%(95%CI:0.02-0.07;<0.001),中度ARRS(2-7分)患者显著增至22%(95%CI:0.15-0.29;<0.001)。ARRS高(8-11分)患者ESRD合并累积发生率为59%(95%CI:0.49-0.69;<0.001)。ARRS≥2预测ESRD的汇总敏感性为98%,特异性为30%,DOR为15.08,平均AUROC值为0.82。ARRS≥8预测ESRD的汇总敏感性为58%,特异性为86%,DOR为7.59。meta回归和亚组分析表明,地理区域、研究设计、指数风险、随访时间、患者年龄、发表年份和患者数量的差异可能是ARRS≥8诊断异质性的潜在来源。这项meta分析强调了ARRS评分在预测ANCA-GN患者肾脏结局方面的良好性能。然而,这些发现应通过未来大规模前瞻性研究进行验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11c8/8770957/ad1add8639c0/fmed-08-736754-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验