Mercy Health, 14528 S. Outer Forty, Chesterfield, MO, 63017, USA.
J Clin Monit Comput. 2022 Dec;36(6):1611-1619. doi: 10.1007/s10877-022-00804-6. Epub 2022 Jan 25.
To determine the efficacy of modern survival analysis methods for predicting sepsis onset in ICU, emergency, medical/surgical, and TCU departments. We performed a retrospective analysis on ICU, med/surg, ED, and TCU cases from multiple Mercy Health hospitals from August 2018 to March 2020. Patients in these departments were monitored by the Mercy Virtual vSepsis team and sepsis cases were determined and documented in the Mercy EHR via a rule-based engine utilizing clinical data. We used survival-based modeling methods to predict sepsis onset in these cases. The three survival methods that were used to predict the onset of severe sepsis and septic shock produced AUC values > 0.85 and each provided a median lead time of > 20 h prior to disease onset. This methodology improves upon previous work by demonstrating excellent model performance when generalizing survival-based prediction methods to both severe sepsis and septic shock as well as non-ICU departments.IRB InformationTrial Registration ID: 1,532,327-1.Trial Effective Date: 12/02/2019.
为了确定现代生存分析方法在预测 ICU、急诊、内科/外科和 TCU 部门发生脓毒症方面的疗效。我们对 2018 年 8 月至 2020 年 3 月期间多家 Mercy Health 医院的 ICU、内科/外科、ED 和 TCU 病例进行了回顾性分析。 Mercy Virtual vSepsis 团队监测了这些科室的患者, Mercy EHR 通过利用临床数据的基于规则的引擎确定并记录了脓毒症病例。我们使用基于生存的建模方法来预测这些病例中脓毒症的发生。用于预测严重脓毒症和脓毒性休克发生的三种生存方法的 AUC 值均>0.85,并且每种方法在疾病发生前都提供了>20 小时的中位前置时间。该方法通过证明将基于生存的预测方法推广到严重脓毒症和脓毒性休克以及非 ICU 科室时具有出色的模型性能,改进了之前的工作。IRB 信息试验注册 ID:1,532,327-1。试验生效日期:2019 年 12 月 2 日。