Suppr超能文献

铜和铁沸石催化中的第二壳层晶格效应。

Second-Sphere Lattice Effects in Copper and Iron Zeolite Catalysis.

机构信息

Department of Chemistry, Stanford University, Stanford, California 94305, United States.

Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.

出版信息

Chem Rev. 2022 Jul 27;122(14):12207-12243. doi: 10.1021/acs.chemrev.1c00915. Epub 2022 Jan 25.

Abstract

Transition-metal-exchanged zeolites perform remarkable chemical reactions from low-temperature methane to methanol oxidation to selective reduction of NOx pollutants. As with metalloenzymes, metallozeolites have impressive reactivities that are controlled in part by interactions outside the immediate coordination sphere. These second-sphere effects include activating a metal site through enforcing an "entatic" state, controlling binding and access to the metal site with pockets and channels, and directing radical rebound vs cage escape. This review explores these effects with emphasis placed on but not limited to the selective oxidation of methane to methanol with a focus on copper and iron active sites, although other transition-metal-ion zeolite reactions are also explored. While the actual active-site geometric and electronic structures are different in the copper and iron metallozeolites compared to the metalloenzymes, their second-sphere interactions with the lattice or the protein environments are found to have strong parallels that contribute to their high activity and selectivity.

摘要

过渡金属交换沸石在低温甲烷到甲醇氧化到选择性还原氮氧化物污染物的反应中表现出显著的性能。与金属酶类似,金属沸石具有令人印象深刻的反应性,部分受到直接配位球外相互作用的控制。这些第二球效应包括通过强制“entatic”状态激活金属位点,用口袋和通道控制结合和进入金属位点,并指导自由基回弹与笼逃逸。本综述探讨了这些效应,重点但不限于铜和铁活性位的甲烷选择性氧化为甲醇,尽管也探讨了其他过渡金属离子沸石反应。虽然与金属酶相比,铜和铁金属沸石中的实际活性位点的几何和电子结构不同,但它们与晶格或蛋白质环境的第二球相互作用具有很强的相似性,这有助于它们的高活性和选择性。

相似文献

1
Second-Sphere Lattice Effects in Copper and Iron Zeolite Catalysis.
Chem Rev. 2022 Jul 27;122(14):12207-12243. doi: 10.1021/acs.chemrev.1c00915. Epub 2022 Jan 25.
2
Iron and Copper Active Sites in Zeolites and Their Correlation to Metalloenzymes.
Chem Rev. 2018 Mar 14;118(5):2718-2768. doi: 10.1021/acs.chemrev.7b00344. Epub 2017 Dec 19.
3
Theoretical Overview of Methane Hydroxylation by Copper-Oxygen Species in Enzymatic and Zeolitic Catalysts.
Acc Chem Res. 2018 Oct 16;51(10):2382-2390. doi: 10.1021/acs.accounts.8b00236. Epub 2018 Sep 12.
4
Continuous Partial Oxidation of Methane to Methanol Catalyzed by Diffusion-Paired Copper Dimers in Copper-Exchanged Zeolites.
J Am Chem Soc. 2019 Jul 24;141(29):11641-11650. doi: 10.1021/jacs.9b04906. Epub 2019 Jul 15.
5
Structural characterization of a non-heme iron active site in zeolites that hydroxylates methane.
Proc Natl Acad Sci U S A. 2018 May 1;115(18):4565-4570. doi: 10.1073/pnas.1721717115. Epub 2018 Apr 2.
6
Transition-metal ions in zeolites: coordination and activation of oxygen.
Inorg Chem. 2010 Apr 19;49(8):3573-83. doi: 10.1021/ic901814f.
7
Catalytic conversion of methane to methanol using Cu-zeolites.
Chimia (Aarau). 2012;66(9):668-74. doi: 10.2533/chimia.2012.668.
8
Direct catalytic conversion of methane to methanol in an aqueous medium by using copper-promoted Fe-ZSM-5.
Angew Chem Int Ed Engl. 2012 May 21;51(21):5129-33. doi: 10.1002/anie.201108706. Epub 2012 Apr 5.
9
A [Cu2O]2+ core in Cu-ZSM-5, the active site in the oxidation of methane to methanol.
Proc Natl Acad Sci U S A. 2009 Nov 10;106(45):18908-13. doi: 10.1073/pnas.0910461106. Epub 2009 Oct 28.
10
Encapsulation of Fe(III) and Cu(II) complexes in NaY zeolite.
J Colloid Interface Sci. 2004 Sep 1;277(1):138-45. doi: 10.1016/j.jcis.2004.04.015.

引用本文的文献

1
Bioinorganic chemistry: where from and where to?
J Biol Inorg Chem. 2025 Jun 8. doi: 10.1007/s00775-025-02112-1.
2
Isolated and Paired Metal Sites in Zeolites Using Solid-State Ion Exchange.
Angew Chem Int Ed Engl. 2025 Jun 2;64(23):e202505186. doi: 10.1002/anie.202505186. Epub 2025 Apr 29.
3
Highly efficient oxidation of methane into methanol over Ni-promoted Cu/ZSM-5.
RSC Adv. 2025 Mar 17;15(11):8244-8252. doi: 10.1039/d5ra01115a.
4
CO Hydrogenation on Ru Single-Atom Catalyst Encapsulated in Silicalite: a DFT and Microkinetic Modeling Study.
J Phys Chem C Nanomater Interfaces. 2024 Sep 23;128(39):16551-16562. doi: 10.1021/acs.jpcc.4c05941. eCollection 2024 Oct 3.
5
UV-Vis-NIR Absorption Spectroscopy and Catalysis.
Chem Rev. 2024 Mar 13;124(5):2352-2418. doi: 10.1021/acs.chemrev.3c00602. Epub 2024 Feb 26.
6
Magnetic Exchange Coupling in Zeolite Copper Dimers and Its Contribution to Methane Activation.
J Am Chem Soc. 2024 Mar 6;146(9):6061-6071. doi: 10.1021/jacs.3c13295. Epub 2024 Feb 22.
7
The Role of / IR Spectroscopy in Unraveling Adsorbate-Induced Structural Changes in Heterogeneous Catalysis.
Chem Rev. 2023 Nov 8;123(21):12135-12169. doi: 10.1021/acs.chemrev.3c00372. Epub 2023 Oct 26.
8
Methane Activation by a Mononuclear Copper Active Site in the Zeolite Mordenite: Effect of Metal Nuclearity on Reactivity.
J Am Chem Soc. 2022 Oct 26;144(42):19305-19316. doi: 10.1021/jacs.2c06269. Epub 2022 Oct 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验