Ye Lin, Ying Yiran, Sun Dengrong, Qiao Jinli, Huang Haitao
Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
College of Environmental Science and Engineering, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University Shanghai 201620, China.
Nanoscale. 2022 Feb 3;14(5):2065-2073. doi: 10.1039/d1nr07613b.
Exploring high-activity electrocatalysts for an oxygen reduction reaction (ORR) is of great significance for a variety of renewable energy conversion and storage technologies. Here, ultrafine MoC nanoparticles assembled in N and P-co-doped carbon (MoC@NPC) was developed from ZIF-8 encapsulated molybdenum-based polyoxometalates (PMo) as a highly efficient ORR electrocatalyst and shows excellent performance for zinc-air batteries. The well distribution of the PMo in ZIF-8 results in the formation of ultrafine MoC nanocrystallites encapsulated in a porous carbon matrix after pyrolysis. Significantly, from experimental and theoretical investigations, the highly porous structure, highly dispersed ultrafine MoC and the N and P co-doping in the MoC@NPC lead to the remarkable ORR activity with an onset potential of ∼1.01 V, a half-wave potential of ∼0.90 V and a Tafel slope of 51.7 mV dec at 1600 rpm in 0.1 M KOH. In addition, the MoC@NPC as an ORR catalyst in zinc-air batteries achieved a high power density of 266 mW cm and a high specific capacity of 780.9 mA h g, exceeding that driven by commercial Pt/C. Our results revealed that the porous architecture and ultrafine MoC nanocrystallites of the electrocatalysts could facilitate mass transport and increase the accessibility of active sites, thus optimizing their performances in an ORR. The present study provides some guidelines for the design and synthesis of efficient nanostructured electrocatalysts.
探索用于氧还原反应(ORR)的高活性电催化剂对于多种可再生能源转换和存储技术具有重要意义。在此,由封装在ZIF-8中的钼基多金属氧酸盐(PMo)制备出了组装在N和P共掺杂碳中的超细MoC纳米颗粒(MoC@NPC),作为一种高效的ORR电催化剂,并在锌空气电池中表现出优异性能。PMo在ZIF-8中的良好分布导致热解后形成封装在多孔碳基质中的超细MoC纳米微晶。值得注意的是,通过实验和理论研究表明,MoC@NPC中高度多孔的结构、高度分散的超细MoC以及N和P共掺杂导致了显著的ORR活性,在0.1 M KOH中,1600 rpm下的起始电位约为1.01 V,半波电位约为0.90 V,塔菲尔斜率为51.7 mV dec。此外,MoC@NPC作为锌空气电池中的ORR催化剂,实现了266 mW cm的高功率密度和780.9 mA h g的高比容量,超过了由商业Pt/C驱动的电池。我们的结果表明,电催化剂的多孔结构和超细MoC纳米微晶可以促进质量传输并增加活性位点的可及性,从而优化它们在ORR中的性能。本研究为高效纳米结构电催化剂的设计和合成提供了一些指导方针。