Suppr超能文献

有限居住地址对预测空气污染健康效应分析的影响:一项模拟研究。

Impact of limited residential address on health effect analysis of predicted air pollution in a simulation study.

机构信息

Department of Statistics, Iowa State University, 1212, Snedecor Hall, 2438 Osborn Dr, Ames, IA, 50011, USA.

Department of Geography, University of Oregon, Eugene, OR, 97403, USA.

出版信息

J Expo Sci Environ Epidemiol. 2022 Jul;32(4):637-643. doi: 10.1038/s41370-022-00412-1. Epub 2022 Jan 26.

Abstract

BACKGROUND

Recent epidemiological studies of air pollution have adopted spatially-resolved prediction models to estimate air pollution concentrations at people's homes. However, the benefit of these models was limited in many studies that used existing health data relying on incomplete addresses resulting from confidentiality concerns or lack of interest when designed.

OBJECTIVE

This simulation study aimed to understand the impact of incomplete addresses on health effect estimation based on the association between particulate matter with diameter ≤10 µm (PM) and low birth weight (LBW).

METHODS

We generated true annual average concentrations of PM at 46,007 mothers' homes and their LBW status, using the parameters obtained from our data analysis and a previous study in Seoul, Korea. Then, we hypothesized that mothers' address information is limited to the district and compared the properties of their health effect estimates of PM with those using complete addresses. We performed this comparison across eight environmental scenarios that represent various spatial distributions of PM and nine exposure prediction methods that provide different sets of predicted PM concentrations of mothers.

RESULTS

We observed increased bias and root mean square error consistently across all environmental scenarios and prediction methods using incomplete addresses compared to complete addresses. However, the bias related to incomplete addresses decreased when we used population-representative exposures averaged to the district from predicted PM at census tract centroids.

SIGNIFICANCE

Our simulation study suggested that individual exposure estimated by prediction approaches and averaged across population-representative points can provide improved accuracy in health effect estimates when complete address data are unavailable.

IMPACT STATEMENT

Our simulation study focused on a common and practical challenge of limited address information in air pollution epidemiology, and investigated its impact on health effect analysis. Cohort studies of air pollution have developed advanced exposure prediction model to allow the estimation of individual-level long-term air pollution concentrations at people's addresses. However, it is common that address information of existing health data is available at the coarse spatial scale such as city, district, and zip code area. Our findings can help understand the possible consequences of limited address information and provide practical guidance in achieving the accuracy in health effect analysis.

摘要

背景

最近的空气污染流行病学研究采用了空间分辨率预测模型来估算人们家中的空气污染浓度。然而,在许多使用现有健康数据的研究中,由于保密性问题或设计时缺乏兴趣,这些模型的效果受到限制,这些数据的地址信息并不完整。

目的

本模拟研究旨在了解基于细颗粒物(PM)与低出生体重(LBW)之间的关联,不完全地址对健康影响估计的影响。

方法

我们使用从数据分析和韩国首尔之前的一项研究中获得的参数,生成了 46007 位母亲家中的 PM 年平均浓度及其 LBW 状况。然后,我们假设母亲的地址信息仅限于区,并比较了使用完整地址和不完全地址时 PM 的健康影响估计值的特性。我们在 8 个环境场景中进行了此比较,这些场景代表了 PM 的各种空间分布,以及提供了不同的母亲预测 PM 浓度集的 9 种暴露预测方法。

结果

与完整地址相比,我们观察到在所有环境场景和使用不完全地址的预测方法中,估计值的偏差和均方根误差始终增加。但是,当我们使用从普查区中心点预测的 PM 平均到区的人口代表性暴露值时,与不完全地址相关的偏差会降低。

意义

我们的模拟研究表明,当无法获得完整地址数据时,通过预测方法估计的个体暴露值并在具有代表性的人群中平均,可以提高健康影响估计的准确性。

影响陈述

我们的模拟研究侧重于空气污染流行病学中有限地址信息的常见且实际挑战,并研究了其对健康影响分析的影响。空气污染的队列研究已经开发了先进的暴露预测模型,允许在人们的地址处估算个体水平的长期空气污染浓度。然而,现有的健康数据的地址信息通常只能在城市、区和邮政编码区域等粗粒度空间尺度上获得。我们的研究结果可以帮助了解有限地址信息的可能后果,并为在健康影响分析中实现准确性提供实用指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f74/9349037/bd7970f02757/41370_2022_412_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验