Suppr超能文献

一种有用的凝集素结合指南:57 种独特凝集素特异性的机器学习定向注释。

A Useful Guide to Lectin Binding: Machine-Learning Directed Annotation of 57 Unique Lectin Specificities.

机构信息

Department of Chemistry and Molecular Biology and Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden 405 30.

Biomedical Chemistry Institute, Department of Chemistry, New York University, 100 Washington Square East, Room 1001, New York, New York 10003, United States.

出版信息

ACS Chem Biol. 2022 Nov 18;17(11):2993-3012. doi: 10.1021/acschembio.1c00689. Epub 2022 Jan 27.

Abstract

Glycans are critical to every facet of biology and medicine, from viral infections to embryogenesis. Tools to study glycans are rapidly evolving; however, the majority of our knowledge is deeply dependent on binding by glycan binding proteins (e.g., lectins). The specificities of lectins, which are often naturally isolated proteins, have not been well-defined, making it difficult to leverage their full potential for glycan analysis. Herein, we use a combination of machine learning algorithms and expert annotation to define lectin specificity for this important probe set. Our analysis uses comprehensive glycan microarray analysis of commercially available lectins we obtained using version 5.0 of the Consortium for Functional Glycomics glycan microarray (CFGv5). This data set was made public in 2011. We report the creation of this data set and its use in large-scale evaluation of lectin-glycan binding behaviors. Our motif analysis was performed by integrating 68 manually defined glycan features with systematic probing of computational rules for significant binding motifs using mono- and disaccharides and linkages. Combining machine learning with manual annotation, we create a detailed interpretation of glycan-binding specificity for 57 unique lectins, categorized by their major binding motifs: mannose, complex-type -glycan, -glycan, fucose, sialic acid and sulfate, GlcNAc and chitin, Gal and LacNAc, and GalNAc. Our work provides fresh insights into the complex binding features of commercially available lectins in current use, providing a critical guide to these important reagents.

摘要

糖链对于生物学和医学的各个方面都至关重要,从病毒感染到胚胎发生。用于研究糖链的工具正在迅速发展;然而,我们的大多数知识仍然深深依赖于糖链结合蛋白(例如凝集素)的结合。凝集素的特异性,通常是天然分离的蛋白质,尚未得到很好的定义,这使得难以充分利用它们在糖链分析中的潜力。在此,我们使用机器学习算法和专家注释的组合来定义该重要探针集的凝集素特异性。我们的分析使用了我们通过 Consortium for Functional Glycomics glycan microarray (CFGv5) 的版本 5.0 获得的商用凝集素的综合糖链微阵列分析。该数据集于 2011 年公开。我们报告了该数据集的创建及其在大规模评估凝集素-糖链结合行为中的使用。我们的基序分析是通过将 68 个手动定义的糖链特征与使用单糖和二糖以及键进行的计算规则的系统探测相结合来完成的。通过将机器学习与手动注释相结合,我们对 57 种独特的凝集素进行了详细的糖链结合特异性解释,这些凝集素根据其主要结合基序进行分类:甘露糖、复杂型聚糖、半乳糖、岩藻糖、唾液酸和硫酸盐、GlcNAc 和几丁质、Gal 和 LacNAc 以及 GalNAc。我们的工作为当前使用的商用凝集素的复杂结合特征提供了新的见解,为这些重要试剂提供了关键指南。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f222/9679999/056d7dfc5641/cb1c00689_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验