Suppr超能文献

一种简单的匹配数据分析建议。

A simple recommendation for the analysis of matching data.

机构信息

Department of Psychology, University of North Carolina, Greensboro.

出版信息

Psychol Methods. 2023 Dec;28(6):1242-1250. doi: 10.1037/met0000474. Epub 2022 Jan 27.

Abstract

The matching paradigm can take a number of forms and has been used in many areas of psychology. When participants are asked to match or order sets of objects, researchers must correctly account for the number of matches expected purely by chance. Not accounting for the expected chance matches can lead to incorrectly drawing conclusions based on one's data. This study demonstrated that the z test can be an appropriate and easy test to use in the analysis of matching data from studies that require pairs of objects to be matched with each other. This article proves that in a matching paradigm the expected number of chance matches is 1.0 and the associated variance is also 1.0. The test is shown to maintain the Type I error close to the nominal significance level when the null hypothesis is true and the sample size is at least 80 or 110. To attain power of .80, a sample size larger than 80 may be needed depending upon the effect size associated with the area of interest and the hypothesized alternative probability distribution. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

摘要

匹配范式可以采用多种形式,并且已经在心理学的许多领域中得到了应用。当参与者被要求匹配或排列一组对象时,研究人员必须正确地考虑到纯粹由于机会而产生的匹配数量。如果不考虑预期的机会匹配,可能会导致根据自己的数据得出不正确的结论。本研究表明,z 检验可以作为一种合适且简单的检验方法,用于分析需要将对象相互匹配的研究中的匹配数据。本文证明,在匹配范式中,预期的机会匹配数量为 1.0,并且相关的方差也是 1.0。当零假设为真且样本量至少为 80 或 110 时,检验可以保持接近名义显着水平的 I 型错误率。要达到 0.80 的功效,可能需要大于 80 的样本量,具体取决于与感兴趣的领域相关的效应大小和假设的替代概率分布。(PsycInfo 数据库记录(c)2024 APA,保留所有权利)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验