Suppr超能文献

冷等离体氛围微波等离子体的体外抗真菌活性及其与葡萄糖酸氯己定联合应用对厚皮马拉色菌的协同活性。

In vitro antifungal activity of cold atmospheric microwave plasma and synergistic activity against Malassezia pachydermatis when combined with chlorhexidine gluconate.

机构信息

Laboratory of Veterinary Dermatology and the Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.

Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea.

出版信息

Vet Med Sci. 2022 Mar;8(2):524-529. doi: 10.1002/vms3.719. Epub 2022 Jan 19.

Abstract

BACKGROUND

The antifungal efficacy of cold atmospheric microwave plasma (CAMP) against Malassezia pachydermatis has not been to be evaluated.

OBJECTIVE

To examine the antifungal effects of CAMP against M. pachydermatis and its synergistic effects with chlorhexidine gluconate (CHX).

METHODS

A M. pachydermatis isolate was collected from a dog with otitis externa and Malassezia dermatitis at the Seoul National University Veterinary Medical Teaching Hospital. The antifungal effect was determined by applying CAMP to a M. pachydermatis isolate that was incubated for 3 days at 37°C. After 1, 2, 3 and 5 min of application, the efficacy of the plasma treatment was determined according to the number of colony forming units (CFUs). A mixture consisting of inoculum and CHX was applied to evaluate the synergistic effect of the plasma treatment in the same way.

RESULTS

The application of CAMP showed significant antifungal effects against M. pachydermatis. The antifungal effect of CAMP was enhanced by an increased exposure time and output power. The application of CAMP with 0.02% and 0.2% CHX resulted in lower survival rates against M. pachydermatis when compared with its sole application at 1 or 2 min.

CONCLUSIONS

The study findings demonstrate that CAMP has a potential as a new antifungal option for M. pachydermatis and has synergistic antifungal effects with CHX in vitro. Clinical applications for CAMP are necessary to assess the antifungal efficacy for patients.

摘要

背景

冷等离体微波等离子体(CAMP)对厚皮马拉色菌的抗真菌效果尚未得到评估。

目的

研究 CAMP 对厚皮马拉色菌的抗真菌作用及其与葡萄糖酸氯己定(CHX)的协同作用。

方法

从首尔国立大学兽医教学医院患有外耳炎和马拉色菌性皮炎的犬中分离出一株厚皮马拉色菌。将 CAMP 应用于在 37°C 孵育 3 天的厚皮马拉色菌分离株,以确定其抗真菌效果。应用等离子体处理 1、2、3 和 5 分钟后,根据菌落形成单位(CFU)的数量确定等离子体处理的效果。将包含接种物和 CHX 的混合物应用于相同的方法来评估等离子体处理的协同作用。

结果

CAMP 对厚皮马拉色菌表现出显著的抗真菌作用。CAMP 的抗真菌作用随着暴露时间和输出功率的增加而增强。与单独应用 1 或 2 分钟相比,应用 0.02%和 0.2% CHX 的 CAMP 导致厚皮马拉色菌的存活率降低。

结论

研究结果表明,CAMP 作为一种新型抗真菌选择,对厚皮马拉色菌具有潜在作用,并与 CHX 在体外具有协同抗真菌作用。需要对 CAMP 进行临床应用评估,以确定其对患者的抗真菌疗效。

相似文献

4
Antifungal susceptibility of isolated from the external auditive conduct from dogs, in central Chile.
Open Vet J. 2022 Jan-Feb;12(1):99-104. doi: 10.5455/OVJ.2022.v12.i1.12. Epub 2022 Feb 10.
6
In vitro antifungal susceptibility of Malassezia pachydermatis strains isolated from dogs with chronic and acute otitis externa.
Mycopathologia. 2014 Oct;178(3-4):315-9. doi: 10.1007/s11046-014-9782-0. Epub 2014 Jul 17.
7
Effects of beta-thujaplicin on anti-Malassezia pachydermatis remedy for canine otitis externa.
J Vet Med Sci. 2005 Dec;67(12):1243-7. doi: 10.1292/jvms.67.1243.
8
In vitro effects of omeprazole in combination with antifungal compounds against Malassezia pachydermatis.
Vet Med Sci. 2023 Nov;9(6):2594-2599. doi: 10.1002/vms3.1305. Epub 2023 Oct 24.
9
In vitro and in vivo activity of a killer peptide against Malassezia pachydermatis causing otitis in dogs.
Med Mycol. 2014 May;52(4):350-5. doi: 10.1093/mmy/myt016. Epub 2014 Feb 28.
10
In vitro antifungal susceptibility of Malassezia pachydermatis from dogs with and without skin lesions.
Vet Microbiol. 2012 Mar 23;155(2-4):395-8. doi: 10.1016/j.vetmic.2011.09.008. Epub 2011 Sep 12.

本文引用的文献

3
Inactivation of human pathogenic dermatophytes by non-thermal plasma.
J Microbiol Methods. 2015 Dec;119:53-8. doi: 10.1016/j.mimet.2015.09.017. Epub 2015 Sep 30.
4
In vitro antifungal susceptibility of Malassezia pachydermatis strains isolated from dogs with chronic and acute otitis externa.
Mycopathologia. 2014 Oct;178(3-4):315-9. doi: 10.1007/s11046-014-9782-0. Epub 2014 Jul 17.
5
Non-thermal plasma treatment diminishes fungal viability and up-regulates resistance genes in a plant host.
PLoS One. 2014 Jun 9;9(6):e99300. doi: 10.1371/journal.pone.0099300. eCollection 2014.
6
Chemical organization of the cell wall polysaccharide core of Malassezia restricta.
J Biol Chem. 2014 May 2;289(18):12647-56. doi: 10.1074/jbc.M113.547034. Epub 2014 Mar 13.
7
Photons and particles emitted from cold atmospheric-pressure plasma inactivate bacteria and biomolecules independently and synergistically.
J R Soc Interface. 2013 Sep 25;10(89):20130591. doi: 10.1098/rsif.2013.0591. Print 2013 Dec 6.
9
Molecular analysis of Malassezia pachydermatis isolated from canine skin and ear in Korea.
Med Mycol. 2013 May;51(4):396-404. doi: 10.3109/13693786.2012.740575. Epub 2012 Nov 21.
10
Skin decontamination by low-temperature atmospheric pressure plasma jet and dielectric barrier discharge plasma.
J Hosp Infect. 2012 Jul;81(3):177-83. doi: 10.1016/j.jhin.2012.02.012. Epub 2012 Jun 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验