Suppr超能文献

结合同位素质谱工作流程和多维同时分离技术在非靶向分析中检测、鉴定和验证代谢物。

Combining Isotopologue Workflows and Simultaneous Multidimensional Separations to Detect, Identify, and Validate Metabolites in Untargeted Analyses.

机构信息

Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States.

Department of Chemistry, Center for Metabolomics and Isotope Tracing, Washington University, St. Louis, Missouri, 63130, United States.

出版信息

Anal Chem. 2022 Feb 8;94(5):2527-2535. doi: 10.1021/acs.analchem.1c04430. Epub 2022 Jan 28.

Abstract

While the combination of liquid chromatography and tandem mass spectrometry (LC-MS/MS) is commonly used for feature annotation in untargeted omics experiments, ensuring these prioritized features originate from endogenous metabolism remains challenging. Isotopologue workflows, such as isotopic ratio outlier analysis (IROA), mass isotopomer ratio analysis of U-C labeled extracts (MIRACLE), and credentialing incorporate isotopic labels directly into metabolic precursors, guaranteeing that all features of interest are unequivocal byproducts of cellular metabolism. Furthermore, comprehensive separation and annotation of small molecules continue to challenge the metabolomics field, particularly for isomeric systems. In this paper, we evaluate the analytical utility of incorporating ion mobility spectrometry (IMS) as an additional separation mechanism into standard LC-MS/MS isotopologue workflows. Since isotopically labeled molecules codrift in the IMS dimension with their C versions, LC-IMS-CID-MS provides four dimensions (LC, IMS, MS, and MS/MS) to directly investigate the metabolic activity of prioritized untargeted features. Here, we demonstrate this additional selectivity by showcasing how a preliminary data set of 30 endogeneous metabolites are putatively annotated from isotopically labeled cultures when analyzed by LC-IMS-CID-MS. Metabolite annotations were based on several molecular descriptors, including accurate mass measurement, carbon number, annotated fragmentation spectra, and collision cross section (CCS), collectively illustrating the importance of incorporating IMS into isotopologue workflows. Overall, our results highlight the enhanced separation space and increased annotation confidence afforded by IMS for metabolic characterization and provide a unique perspective for future developments in isotopically labeled MS experiments.

摘要

虽然液相色谱和串联质谱(LC-MS/MS)的组合通常用于无靶向代谢组学实验中的特征注释,但确保这些优先特征源自内源性代谢仍然具有挑战性。同量异位素工作流程,如同位素比值异常分析(IROA)、U-C 标记提取物的质量同位素分馏比分析(MIRACLE)和认证,直接将同位素标记物纳入代谢前体,保证所有感兴趣的特征都是细胞代谢的明确副产物。此外,小分子的全面分离和注释仍然是代谢组学领域的挑战,特别是对于同系物系统。在本文中,我们评估了将离子淌度谱(IMS)作为额外的分离机制纳入标准 LC-MS/MS 同量异位素工作流程的分析效用。由于同位素标记分子在 IMS 维度上与它们的 C 版本共漂移,LC-IMS-CID-MS 提供了四个维度(LC、IMS、MS 和 MS/MS),可以直接研究优先无靶向特征的代谢活性。在这里,我们通过展示当通过 LC-IMS-CID-MS 分析时,如何从同位素标记培养物中推测出初步数据集 30 种内源性代谢物的鉴定,展示了这种额外的选择性。代谢物注释基于几个分子描述符,包括准确的质量测量、碳原子数、注释的碎片光谱和碰撞截面(CCS),共同说明了将 IMS 纳入同量异位素工作流程的重要性。总的来说,我们的结果突出了 IMS 为代谢特征提供的增强的分离空间和增加的注释置信度,并为同位素标记 MS 实验的未来发展提供了独特的视角。

相似文献

2
Ion Mobility Spectrometry: Fundamental Concepts, Instrumentation, Applications, and the Road Ahead.
J Am Soc Mass Spectrom. 2019 Nov;30(11):2185-2195. doi: 10.1007/s13361-019-02288-2. Epub 2019 Sep 6.
8
Recent applications of ion mobility spectrometry in natural product research.
J Pharm Biomed Anal. 2021 Feb 20;195:113846. doi: 10.1016/j.jpba.2020.113846. Epub 2021 Jan 7.
9
High Confidence Shotgun Lipidomics Using Structurally Selective Ion Mobility-Mass Spectrometry.
Methods Mol Biol. 2021;2306:11-37. doi: 10.1007/978-1-0716-1410-5_2.
10
Targeting unique biological signals on the fly to improve MS/MS coverage and identification efficiency in metabolomics.
Anal Chim Acta. 2021 Mar 8;1149:338210. doi: 10.1016/j.aca.2021.338210. Epub 2021 Jan 12.

引用本文的文献

5
High-throughput Saccharomyces cerevisiae cultivation method for credentialing-based untargeted metabolomics.
Anal Bioanal Chem. 2023 Jul;415(17):3415-3434. doi: 10.1007/s00216-023-04724-5. Epub 2023 May 22.
6
Critical evaluation of the role of external calibration strategies for IM-MS.
Anal Bioanal Chem. 2022 Oct;414(25):7483-7493. doi: 10.1007/s00216-022-04263-5. Epub 2022 Aug 12.

本文引用的文献

1
Metabolic Flux Analysis-Linking Isotope Labeling and Metabolic Fluxes.
Metabolites. 2020 Nov 6;10(11):447. doi: 10.3390/metabo10110447.
2
Crowd-Sourced Chemistry: Considerations for Building a Standardized Database to Improve Omic Analyses.
ACS Omega. 2020 Jan 9;5(2):980-985. doi: 10.1021/acsomega.9b03708. eCollection 2020 Jan 21.
4
Fundamental study of ion trapping and multiplexing using drift tube-ion mobility time-of-flight mass spectrometry for non-targeted metabolomics.
Anal Bioanal Chem. 2019 Sep;411(24):6265-6274. doi: 10.1007/s00216-019-02021-8. Epub 2019 Jul 13.
5
Isotopic Ratio Outlier Analysis (IROA) for Quantitative Analysis.
Methods Mol Biol. 2019;1996:17-28. doi: 10.1007/978-1-4939-9488-5_2.
6
Ion mobility conformational lipid atlas for high confidence lipidomics.
Nat Commun. 2019 Feb 28;10(1):985. doi: 10.1038/s41467-019-08897-5.
7
Collision cross section compendium to annotate and predict multi-omic compound identities.
Chem Sci. 2018 Nov 27;10(4):983-993. doi: 10.1039/c8sc04396e. eCollection 2019 Jan 28.
8
Recommendations for reporting ion mobility Mass Spectrometry measurements.
Mass Spectrom Rev. 2019 May;38(3):291-320. doi: 10.1002/mas.21585. Epub 2019 Feb 1.
10
Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry.
Anal Chem. 2018 Dec 18;90(24):14484-14492. doi: 10.1021/acs.analchem.8b04322. Epub 2018 Nov 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验