Suppr超能文献

在发展中的大流行中,对簇大小的统计分布进行比较。

Comparisons of statistical distributions for cluster sizes in a developing pandemic.

机构信息

School of Mathematical Sciences and ARC Centre of Excellence for Mathematical and Statistical Frontiers, QUT, GPO Box 2434, Brisbane, 4001, Australia.

出版信息

BMC Med Res Methodol. 2022 Jan 30;22(1):32. doi: 10.1186/s12874-022-01517-9.

Abstract

BACKGROUND

We consider cluster size data of SARS-CoV-2 transmissions for a number of different settings from recently published data. The statistical characteristics of superspreading events are commonly described by fitting a negative binomial distribution to secondary infection and cluster size data as an alternative to the Poisson distribution as it is a longer tailed distribution, with emphasis given to the value of the extra parameter which allows the variance to be greater than the mean. Here we investigate whether other long tailed distributions from more general extended Poisson process modelling can better describe the distribution of cluster sizes for SARS-CoV-2 transmissions.

METHODS

We use the extended Poisson process modelling (EPPM) approach with nested sets of models that include the Poisson and negative binomial distributions to assess the adequacy of models based on these standard distributions for the data considered.

RESULTS

We confirm the inadequacy of the Poisson distribution in most cases, and demonstrate the inadequacy of the negative binomial distribution in some cases.

CONCLUSIONS

The probability of a superspreading event may be underestimated by use of the negative binomial distribution as much larger tail probabilities are indicated by EPPM distributions than negative binomial alternatives. We show that the large shared accommodation, meal and work settings, of the settings considered, have the potential for more severe superspreading events than would be predicted by a negative binomial distribution. Therefore public health efforts to prevent transmission in such settings should be prioritised.

摘要

背景

我们从最近发表的数据中考虑了多种不同环境下 SARS-CoV-2 传播的集群规模数据。超级传播事件的统计特征通常通过将负二项分布拟合到二次感染和集群规模数据上来描述,而不是使用泊松分布,因为它是一个长尾分布,重点放在允许方差大于均值的额外参数上。在这里,我们研究了来自更一般的扩展泊松过程模型的其他长尾分布是否可以更好地描述 SARS-CoV-2 传播的集群规模分布。

方法

我们使用带有嵌套模型的扩展泊松过程模型 (EPPM) 方法,其中包括泊松分布和负二项式分布,以评估基于这些标准分布的模型对所考虑数据的适当性。

结果

我们在大多数情况下确认了泊松分布的不适当性,并证明了在某些情况下负二项式分布的不适当性。

结论

使用负二项式分布可能低估了超级传播事件的可能性,因为 EPPM 分布比负二项式替代方案指示的尾部概率更大。我们表明,所考虑的设置中大型共享住宿、用餐和工作场所具有比负二项式分布预测的更严重的超级传播事件的潜力。因此,应优先考虑在这些环境中采取公共卫生措施来预防传播。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/384d/8802411/6826eed76bb0/12874_2022_1517_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验