School of Systems Science, Beijing Normal University, No. 19, Xinjiekou Wai Street, Beijing 100875, China.
Microsoft Research, No. 5 Danling Street, Haidian District, Beijing 10080, China.
Chaos. 2022 Jan;32(1):013126. doi: 10.1063/5.0076521.
Network structures play important roles in social, technological, and biological systems. However, the observable nodes and connections in real cases are often incomplete or unavailable due to measurement errors, private protection issues, or other problems. Therefore, inferring the complete network structure is useful for understanding human interactions and complex dynamics. The existing studies have not fully solved the problem of the inferring network structure with partial information about connections or nodes. In this paper, we tackle the problem by utilizing time series data generated by network dynamics. We regard the network inference problem based on dynamical time series data as a problem of minimizing errors for predicting states of observable nodes and proposed a novel data-driven deep learning model called Gumbel-softmax Inference for Network (GIN) to solve the problem under incomplete information. The GIN framework includes three modules: a dynamics learner, a network generator, and an initial state generator to infer the unobservable parts of the network. We implement experiments on artificial and empirical social networks with discrete and continuous dynamics. The experiments show that our method can infer the unknown parts of the structure and the initial states of the observable nodes with up to 90% accuracy. The accuracy declines linearly with the increase of the fractions of unobservable nodes. Our framework may have wide applications where the network structure is hard to obtain and the time series data is rich.
网络结构在社会、技术和生物系统中起着重要作用。然而,由于测量误差、隐私保护问题或其他问题,实际情况下可观察到的节点和连接往往是不完整的或不可用的。因此,推断完整的网络结构有助于理解人类的相互作用和复杂动态。现有研究尚未完全解决利用连接或节点的部分信息推断网络结构的问题。在本文中,我们通过利用网络动态产生的时间序列数据来解决这个问题。我们将基于动态时间序列数据的网络推断问题视为预测可观测节点状态的误差最小化问题,并提出了一种名为基于 Gumbel-softmax 的网络推断(GIN)的新型数据驱动深度学习模型,以在不完全信息下解决该问题。GIN 框架包括三个模块:动态学习者、网络生成器和初始状态生成器,以推断网络的不可观测部分。我们在具有离散和连续动态的人工和经验社会网络上进行了实验。实验表明,我们的方法可以以高达 90%的准确率推断出结构的未知部分和可观测节点的初始状态。准确率随着不可观测节点分数的增加呈线性下降。我们的框架可能有广泛的应用,其中网络结构难以获取,时间序列数据丰富。