Suppr超能文献

自适应跑步机控制可以进行调整,在维持步行速度的同时增加推进冲量。

Adaptive treadmill control can be manipulated to increase propulsive impulse while maintaining walking speed.

机构信息

Department of Mechanical Engineering, University of Delaware, Newark, DE, USA.

Department of Biomedical Engineering, University of Delaware, Newark, DE, USA.

出版信息

J Biomech. 2022 Mar;133:110971. doi: 10.1016/j.jbiomech.2022.110971. Epub 2022 Jan 28.

Abstract

Adaptive treadmills (ATM) designed to promote increased propulsion may be an effective tool for gait training since propulsion is often impaired post-stroke. Our lab developed a novel ATM controller that adjusts belt speed via real-time changes in step length, propulsive impulse, and position. This study modified the relative importance of propulsion to step length in the controller to determine the effect of increased propulsive feedback gain on measures of propulsion and walking speed. Twenty-two participants completed five trials at their self-selected speed, each with a unique ATM controller. Walking speed, peak AGRF and PGRF, and AGRF, PGRF, and net impulse were compared between the modifications using one-way repeated measures ANOVAs at a significance level of 0.05. Participants chose similar walking speeds across all conditions (all p > 0.2730). There were no significant differences in peak AGRF (p = 0.1956) or PGRF (p = 0.5159) between conditions. AGRF impulse significantly increased as the gain on the propulsive impulse term was increased relative to the gain on step length (p < 0.0001) while PGRF and net impulse were similar across all conditions (p = 0.5487). Increasing the propulsive impulse gain essentially alters the treadmill environment by providing a controlled amount of resistance to increases in propulsive forces. Our findings demonstrate that the ATM can be modified to promote increased propulsive impulse while maintaining a consistent walking speed. Since increasing propulsion is a common goal of post-stroke gait training, these ATM modifications may improve the efficacy of the ATM for gait rehabilitation.

摘要

自适应跑步机(ATM)旨在促进推进力的增加,对于步态训练可能是一种有效的工具,因为中风后推进力通常会受到损害。我们的实验室开发了一种新型的 ATM 控制器,通过实时改变步长、推进冲量和位置来调整履带速度。本研究修改了控制器中推进与步长的相对重要性,以确定增加推进反馈增益对推进和行走速度测量的影响。22 名参与者在自我选择的速度下完成了五次试验,每个试验都使用了独特的 ATM 控制器。使用单向重复测量方差分析,在 0.05 的显著性水平下比较了在修改后的控制器之间的行走速度、AGR 和 PGR 的峰值以及 AGR、PGR 和净冲量的差异。所有条件下参与者都选择了相似的行走速度(均 p > 0.2730)。在条件之间,AGR 的峰值(p = 0.1956)或 PGR 的峰值(p = 0.5159)没有显著差异。当推进冲量项的增益相对于步长的增益增加时,AGR 冲量显著增加(p < 0.0001),而 PGR 和净冲量在所有条件下相似(p = 0.5487)。增加推进冲量增益本质上通过提供对推进力增加的受控阻力来改变跑步机环境。我们的研究结果表明,ATM 可以进行修改,以增加推进冲量,同时保持一致的行走速度。由于增加推进力是中风后步态训练的常见目标,因此这些 ATM 修改可能会提高 ATM 进行步态康复的效果。

相似文献

1
Adaptive treadmill control can be manipulated to increase propulsive impulse while maintaining walking speed.
J Biomech. 2022 Mar;133:110971. doi: 10.1016/j.jbiomech.2022.110971. Epub 2022 Jan 28.
2
Adaptive treadmill walking encourages persistent propulsion.
Gait Posture. 2022 Mar;93:246-251. doi: 10.1016/j.gaitpost.2022.02.017. Epub 2022 Feb 16.
3
How Important is Position in Adaptive Treadmill Control?
J Biomech Eng. 2024 Jan 1;146(1). doi: 10.1115/1.4063823.
4
Mechanisms used to increase propulsive forces on a treadmill in older adults.
J Biomech. 2021 Jan 22;115:110139. doi: 10.1016/j.jbiomech.2020.110139. Epub 2020 Dec 3.
5
Walking speed changes in response to user-driven treadmill control after stroke.
J Biomech. 2020 Mar 5;101:109643. doi: 10.1016/j.jbiomech.2020.109643. Epub 2020 Jan 16.
6
Effects of unilateral real-time biofeedback on propulsive forces during gait.
J Neuroeng Rehabil. 2017 Jun 6;14(1):52. doi: 10.1186/s12984-017-0252-z.
7
Contribution of Paretic and Nonparetic Limb Peak Propulsive Forces to Changes in Walking Speed in Individuals Poststroke.
Neurorehabil Neural Repair. 2016 Sep;30(8):743-52. doi: 10.1177/1545968315624780. Epub 2015 Dec 31.
8
Evaluation of measurements of propulsion used to reflect changes in walking speed in individuals poststroke.
J Biomech. 2016 Dec 8;49(16):4107-4112. doi: 10.1016/j.jbiomech.2016.10.003. Epub 2016 Oct 8.
10
Walking speed changes in response to novel user-driven treadmill control.
J Biomech. 2018 Sep 10;78:143-149. doi: 10.1016/j.jbiomech.2018.07.035. Epub 2018 Jul 29.

引用本文的文献

1
Walking speed can be modulated on an adaptive split-belt treadmill.
bioRxiv. 2025 Jun 7:2025.06.03.657157. doi: 10.1101/2025.06.03.657157.
2
NSF DARE-Transforming modeling in neurorehabilitation: Four threads for catalyzing progress.
J Neuroeng Rehabil. 2024 Apr 3;21(1):46. doi: 10.1186/s12984-024-01324-x.
3
How Important is Position in Adaptive Treadmill Control?
J Biomech Eng. 2024 Jan 1;146(1). doi: 10.1115/1.4063823.

本文引用的文献

1
Speed-related but not detrended gait variability increases with more sensitive self-paced treadmill controllers at multiple slopes.
PLoS One. 2021 May 7;16(5):e0251229. doi: 10.1371/journal.pone.0251229. eCollection 2021.
2
User-driven treadmill walking promotes healthy step width after stroke.
Gait Posture. 2021 May;86:256-259. doi: 10.1016/j.gaitpost.2021.03.031. Epub 2021 Mar 26.
3
Robot-Aided Training of Propulsion During Walking: Effects of Torque Pulses Applied to the Hip and Knee Joints During Stance.
IEEE Trans Neural Syst Rehabil Eng. 2020 Dec;28(12):2923-2932. doi: 10.1109/TNSRE.2020.3039962. Epub 2021 Jan 28.
4
These legs were made for propulsion: advancing the diagnosis and treatment of post-stroke propulsion deficits.
J Neuroeng Rehabil. 2020 Oct 21;17(1):139. doi: 10.1186/s12984-020-00747-6.
5
Walking speed changes in response to user-driven treadmill control after stroke.
J Biomech. 2020 Mar 5;101:109643. doi: 10.1016/j.jbiomech.2020.109643. Epub 2020 Jan 16.
7
Training propulsion: Locomotor adaptation to accelerations of the trailing limb.
IEEE Int Conf Rehabil Robot. 2019 Jun;2019:59-64. doi: 10.1109/ICORR.2019.8779374.
8
Dynamic structure of variability in joint angles and center of mass position during user-driven treadmill walking.
Gait Posture. 2019 Jun;71:241-244. doi: 10.1016/j.gaitpost.2019.04.031. Epub 2019 May 1.
9
Paretic propulsion as a measure of walking performance and functional motor recovery post-stroke: A review.
Gait Posture. 2019 Feb;68:6-14. doi: 10.1016/j.gaitpost.2018.10.027. Epub 2018 Oct 25.
10
Walking speed changes in response to novel user-driven treadmill control.
J Biomech. 2018 Sep 10;78:143-149. doi: 10.1016/j.jbiomech.2018.07.035. Epub 2018 Jul 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验